激光切割的主要工艺
在高功率密度激光束的加热下,材料表面温度升至沸点温度的速度是如此之快,足以避免热传导造成的熔化,于是部分材料汽化成蒸汽消失,部分材料作为喷出物从切缝底部被辅助气体流吹走。2、熔化切割。
当入射的激光束功率密度超过某一值后,光束照射点处材料内部开妈蒸发,形成孔洞。一旦这种小孔形成,它将作为黑体吸收所有的入射光束能量。小孔被熔化金属壁所包围,然后,与光束同轴的辅助气流把孔洞周围的熔融材料带走。随着工件移动,小孔按切割方向同步横移形成一条切缝。激光束继续沿着这条缝的前沿照射,熔化材料持续或脉动地从缝内被吹走。3、氧化熔化切割。一般孔的大小与板厚有关,穿孔平均直径为板厚的一半,因此对较厚的板穿孔孔径较大,且不圆,不宜在要求较高的零件上使用(如石油筛缝管),只能用于废料上。
熔化切割一般使用惰性气体,如果代之以氧气或其它活性气体,材料在激光束的照射下被点燃,与氧气发生激烈的化学反应而产生另一热源,称为氧化熔化切割。4、控制断裂切割。
对于容易受热破坏的脆性材料,通过激光束加热进行高速、可控的切断,称为控制断裂切割。这种切割过程主要内容是:激光束加热脆性材料小块区域,引起该区域大的热梯度和严重的机械变形,导致材料形成裂缝。只要保持均衡的加热梯度,激光束可引导裂缝在任何需要的方向产生。光纤激光切割机使用技巧:1)双焦距激光切割1头是激光切割机上的易损物品,长期使用,导致激光切割1头损坏。
激光焊接
由铁皮车到高速列车,火车的“颜值”越来越高,对于焊接加工的工艺要求也越来越高。由于传统的电阻焊工艺,表面焊点不可避免的存在一定凸痕,且点焊结构车体密封性差,还不能广泛应用高速动车组车体产品。
激光焊接可连续焊和密封焊,热量集中、焊接变形小,车体的平整度凹凸小于1毫米,实现表面无焊接变形、变色的目标,制造出外形美观、不涂装的不锈钢车体产品,而且通过激光焊接工艺,车辆的静强度和疲劳强度提高、车体质量减轻、密封性好,提升产品内在品质和商品化质量,使采用不锈钢车体的高速动车组成为可能。拼接测量:对于超出测量平台范围的超大零件,MVC可采用拼接测量方法,即对零件分成两部分,分别进行图像摄取,然后选择拼接基准对两部分零件图像进行自动拼接,再进行测量。
AFM(Automatic Form
Measurement)系统可以测量钣金零件的高度、凸起的形状、边到边或孔到孔的距离,并可以测量需用游标卡尺、高度规、数位量角器测量的所有形状尺寸。AFM系统完全可以取代手工测量工具,使三维成形测量只需要点击鼠标即可实现。新型AFM系统保留了二维测量系统的所有功能,在测量高度和凸起形状时。同二维测量系统一样快速而***。只需点击鼠标,就可以得到几无偏差的检测结果,***免除了笨拙的手工工具和人工误差。这一强大的新系统还增强了检测数据报告和数据采集功能,从而实现质量控制过程简单化、自动化,消除了钣金车间现场质量控制的瓶颈,可以确保所有需要的检验迅速取得可靠的检测结果。以往,激光切割给不同生产批次之间的质量控制和一致性带来了巨大的挑战。
钣金测量仪采用***的视觉图像技术,简单、快速、可以测量各种不同大小尺寸零件的二维尺寸,大幅提高零件尺寸检测效率,是目前尺寸测量检测的视觉系统。主要特点如下:
1.大幅缩短测量时间
以往的人工尺寸检测对于复杂的钣金零件需要对每个几何尺寸进行测量记录,耗时相对较长,而MVC钣金测量仪从获取零件到后期处理时间只要一分钟左右,不管是多么复杂的零件,所有尺寸一次获取,是传统人工检测的10倍以上。
2.消除认为误差
对于以往的人工尺寸检测容易受人为因素影响,如习惯“测量哪个点”、“测量对象的边缘与何处对齐”、“焦点放在何处”等问题都会根据个人的习惯和技能不同而得出不同的结果。而MVC测量系统自动进行点、线、边缘扑捉,测量精度不受人为因素影响。
3.测量数据应用简便
人工测量需要的零件轮廓内每个元素的测量结果记录在纸上,再手工录入电脑用表格进行计算分析制作检测报告书。而MVC钣金测量仪可导入零件CAD图纸进行贴合比对,自动生成偏差图输出检测报表,支持多种文件格式输出并进行打印。
4.操作简单 只需将零件放置在测量平台任何位置,进行软件测量操作,任何车间人员都可以操作。 5.测量范围广
版权所有©2024 天助网