由于固相颗粒在大小和形状上的差异,以及毛细管内液相凹面的曲率半径不同,使作用于每一颗粒及各方向上的毛细管力和分力不等,这些应力差使得同相颗粒在液相内漂动,于是颗粒重排得以完成。 [3] (2)溶解一再析出当固相在液相中有一定溶解度时,液相所产生的毛细管压力导致固相颗粒的溶解及时析出,于是较小的颗粒溶解,较大的颗粒长大,在颗粒接触点,巨大的毛细管压力使固相溶解度,物质便由溶解度高的区域迁移至溶解度低的区域,结果使颗粒在接触部位趋于扁平且相互靠近。
颗粒达到更紧密堆积,陶瓷坯体便发生收缩而导致致密化,这一过程的驱动力是溶解相与析出相之间的浓度梯度,过程持续约几分钟至几小时。 [3] (3)骨架烧结和颗粒长大在液相数量较少或不能较好地润湿固相颗粒时,固相颗粒互相接触、黏接并形成连续骨架。骨架形成后的烧结过程与固相烧结相同,但由于液相的存在,固相颗粒间的颈部生长和晶粒长大将加快。此时较小的晶粒溶解,而较大的晶粒生长,通常称为品粒粗化或Ostwald生长。这一过程的驱动力是界面自由能的降低。
1960年中后期,气相色谱理论和实践发展,以及机械、光学、电子等技术上的进步,液相色谱又开始活跃。到60年代末期把高压泵和化学键合固定相用于液相色谱就出现了HPLC。1970年中期以后,微处理机技术用于液相色谱,进一步提高了仪器的自动化水平和分析精度。1990年以后,生物工程和生命科学在国际和国内的迅速发展,为液相色谱技术提出了更多、更新的分离、纯化、制备的课题,如人类基因组计划,蛋白质组学有HPLC作预分离等。