连接方式:
1)焊接。高纯、高洁净气体管道,原则上采用焊接,但不能直接对焊,应采用套管接头。
a不锈钢管的焊接:采用argon arc welding,同时管内通入同等纯度的Ar,防止焊接部位氧化。
b钢管的焊接:采用40%银焊条,氮气保护焊,管内通入工艺气体同等纯度的氮气。但要注意,一旦氮气中断或氮气纯度下降,会在焊口附近生成铜的氧化物,产生浸润表面的可能性。所以,当铜管焊接完毕后,要用浸渍丙i酮的纱布来回擦拭管内,消除焊接处可能产生的氧化物。给水或其他液体管道在***i高点设有排气装置,排除积存在管道内的空气或其他气体,以防止气阻造成运行失常。
2)螺纹连接。螺纹连接的气密性不如焊接的好,不适用于高纯、高洁净气体管路连接。螺纹连接使用的密封填料残渣有带入气体的危险,而且内外螺纹旋紧时,金属间的摩擦会产生金属粉尘粒子,污染气体。放空管、取样口和吹扫口的位置应能满足管道内气体吹扫置换的要求。如确实必要,应在铜与铜、铜与铜合金附件螺纹连接时,在外螺纹上均匀地挂上一定量的焊条,提高密封效果,尽可能减少金属粉尘。
3)法兰连接。螺纹或法兰连接处的密封材料应采用聚四氯i乙烯,为确保密封效果,在垫片上涂敷少量氟橡胶(白色、室温固化)。
(3)管路附件的使用:
1)管路附件的材质的选用原则应与管材的选用原则一致。
2)在采用铜材的管路系统中,可以使用不锈钢材质的管道附件;但在不锈钢材质的管路系统中,不容使用铜制材料的管道附件。
高纯气体管路的设计要点:
1.对于不同特性的气体,要规划独立的供应区域,一般分为三个区:腐蚀性/毒性气体区、可燃性气体区、惰性气体区,将相同性质的气体集中加强管理,可燃性气体区要特别规划防爆墙与泄漏口,若空间不足,可考虑将惰性气体放置与毒性/腐蚀性气体区。
2.管路设计需要考虑输送的距离,距离越长,成本越高,风险也越高,通常较合理的设计流速为20ml/S,可燃性气体小于10ml/S,毒性/腐蚀性气体小于8ml/S,在用量设计方面,则需要考虑使用点的压力和管径大小,前者与气体特性有关,后者使用点的管径一般为1/4”~3/8”。实验室供气系统主要包括中央集中供气系统和气瓶分散供气系统两种模式。
3.根据用气设备的分布情况,高纯气体的管网不宜过大或者过长;宜采用不封闭的环形管路,在系统末端连续不断排放少量的气体,以便在管网中总有高纯气体流通,不会发生“死空间”引起高纯气体的污染。
4.管路中应减少不流动气体的“死空间”,不应设有盲管,在特种气体的储气瓶与用气设备之间应设吹扫控制装置、多阀门控制装置、用以控制各个阀门的开关顺序、系统吹除,以确保供气系统的安全、可靠运行和防止“死区”形成而滞留污染物,降低气体纯度。
5.对高纯气体纯度要求不同的用气设备,宜采用分等级高纯气体输送系统;也可采用同等级输送系统,但是在纯度要求高的用气设备邻近处设末端气体提纯装置。
6.为了检测高纯气体的纯度和杂质含量,输送系统除了设置必要的连续检测仪器,如衡量水含量或者氧杂质含量等分析仪外,还应设置定期取样用的检测采样口,以便按规定时间进行采样,分析高纯气体中各种杂质的含量。
7.在亚微米级的集成电路生产中,要求供应10-9级的高纯气体,为了确保末端用气工艺设备处的气体纯度,使气体中的杂质含量(包括尘粒)控制在规定的数值内,一般在设备前设置末端纯化装置,或末端高精度气体过滤器。
实验室供气系统设计要点
(1)通过气瓶和输送管道将载气输送给仪器,在气瓶出口装有单向阀,可避免更换气瓶时有空气和水分混入,另外在一端安装泄压开关球阀,将多余的空气和水分排放后再接入仪器管道,保证仪器用气的纯度。
(2)集中供气系统采用二级减压保证压力的稳定,采用二级减压的方式,一是,经过第i一级减压后,干路压力比气瓶压力大大降低,起到了缓冲管道压力的作用,提高了用气的安全,降低了应用的风险,二是保证仪器供气入口压力的稳定,降低了因为气体压力波动而引起的测量误差,保证了仪器使用的稳定性。⑥管道与设备的连接段宜采用金属管道,如为非金属软管,宜采用聚四氟乙烯管、聚氯i乙烯管,不得采用乳胶管。
(3)由于实验室有些仪器需要使用易i燃气体,如甲i烷,乙i炔,氢气,做这易i燃气体的管路时,应注意管路尽量短,减少中间接头的连接,同时,气瓶一定装入防爆气瓶柜内,气瓶输出端接回火器,可阻止火焰回流气瓶引起的爆i炸,防爆气瓶柜顶端应有连接到室外的通风排气口,且有泄漏报警装置,一旦泄漏能及时报警并将气体排到室外。在需要经常拆装的管段处和管道与设备相联接的地方,大都采用法兰联接。
版权所有©2025 天助网