运行中的电容器的维护
1、电容器应有当班人员,应做好设备运行记录。
2、运行电容器组外观巡检,按规范规定每日进行,如发现外壳膨胀应停止使用,以免出现故障。
3、检查电容器组的每相负载可用电流表。
4、投入电容器组时,环境温度不能低于-40℃,工作环境温度1小时,平均不超过40℃,2小时平均不能超过30℃,且一年平均不能超过20℃。如果超出要求,使用人工冷却(安装风扇)或将电容器组与电网分开。
5、安装地点的温度检查和电容器外壳热温度的检查可以通过温度计等方式进行,并记录温度(尤其在夏季)。
电容器的工作电压和电流,在使用中,其额定电压不能超过1.1倍,额定电流1.3倍。
7、在接通电容器后,会造成电网电压升高,尤其是负荷较轻的情况下,应将部分电容器或所有电容器从电网中切断。
电容器壳体和支撑绝缘子表面应清洁、无损伤、无放电痕迹,电容器外壳应清洁、不变形、不渗油,电容器及铁架的表面不得有灰尘及其它污物。
半导体类型/分类
有两个基本组或分类可用于定义不同的半导体类型:
本征材料:一种本征类型的半导体材料,化学成分非常纯。结果,它具有非常低的电导率水平,具有数量的电荷载流子,即空穴和电子,它拥有等量的电荷载流子。
外在材料:外在 类型的半导体是在基本本征材料中添加了少量杂质的半导体。这种“掺杂”使用来自不同周期表组的元素,这样它在价带中的电子将比半导体本身更多或更少。这会造成电子过剩或短缺。通过这种方式,可以使用两种类型的半导体: 电子是带负电的载流子。
N 型: N 型半导体材料具有过量的电子。以这种方式,自由电子在晶格内可用,并且它们在电势差的影响下沿一个方向的整体运动导致电流流动。这在 N 型半导体中,电荷载流子是电子。
P 型: 在 P 型半导体材料中缺乏电子,即晶格中有“空穴”。电子可能会从一个空位置移动到另一个位置,在这种情况下,可以认为空穴正在移动。这可能在电位差的影响下发生,并且可以看到空穴沿一个方向流动,从而导致电流流动。实际上空穴移动比自由电子移动更难,因此空穴的迁移率小于自由电子的迁移率。空穴是带正电的载流子。
电子器件选型五种小方法
技术进步日新月异,部件制造技术也日臻完善。由早的几款元器件到现在五花八门,品种齐全,是科技人员不断钻研开发而成。但是面对日益增多的元件种类,许多刚入门的小萌新开始面临一个重要问题:如何在各式各样的元件中选择可靠性?那就是我们今天要向你介绍的元件选择原理,一起来看一看。
通常,电子元件的选择遵循以下原则:
a)选元器件的应用环境、性能指标、质量等级等应符合产品要求。
b)优先选择经实践证明质量可信、可靠性高、寿命长的标准件。不得选择停产或即将停产的元器件。谨慎使用非优选元件、非标准元件、新开发元件。
c)选择信誉好的厂家生产的元器件。选择不间断生产,供货及时,多渠道供应零部件。
d)查明组件的型号标志含义,并提供完整的组件型号。
e)压缩晶种、规格和生产厂家,有利于选购和管理。
人们在选择电子元器件时,不能一味的追求价格便宜或者采购方便,因为元器件在 PCB电路板上扮演着十分重要的角色,是 PCB制板不可马虎的关键因素之一。
谈论热门的太赫兹芯片
在太赫兹芯片相关的基础设施方面,与太赫兹技术相关的芯片通常采用成熟的工艺,比如今年 ISSCC的八篇,全部采用28 nm和以前的工艺(大部分采用65 nm工艺),这是因为***工艺的器件特性对于太赫兹技术来说并不是很大。他说:“我们预计,未来太赫兹芯片的芯片工艺将逐渐向28 nm转移,但不能使用16 nm以下。其结果是,中国的太赫兹芯片不受半导体工艺的限制。
但在半导体工艺之外,中国在太赫兹芯片领域的基础设施在 EDA领域落后。目前太赫兹 EDA主要利用 Ansys的 HFSS做无源器件(以及波导)模拟,同时将电路级有源器件的常用模拟 Cadence的 SpectreRF集成起来。这方面,中国的 EDA技术与世界水平相比还有不少差距。
在太赫兹芯片设计领域,中科院上海微系统所、中电38所、50所等科研机构都有相关投入。另外,在太赫兹芯片商用化领域,一些中国的创业公司也正在努力。举例来说,以太赫兹安检成像技术为主导的新公司微度芯创公司,已有80 GHz雷达芯片量产,160 GHz雷达芯片已完成验证,240 GHz雷达芯片正在设计中,预计在未来几年内其产品将会进入下一代基于太赫兹成像的高通量安检产品,值得我们期待。当太赫兹技术进一步成熟时,我们相信中国的相关芯片领域也会越来越多。这个领域并非完全陌生,很多设计技巧和毫米波电路和系统都可以说是一脉相承的,除此之外,中国还有很大的安全检测市场,所以我们认为中国在未来太赫兹芯片设计领域将会世界的潮流。
版权所有©2025 天助网