关于电炉灰铸铁增硫问题
前面已经说过,中频感应电炉熔炼铸铁工艺对比冲天炉熔炼,除了具有熔化温度高的优势外,却有不少缺点,主要有三个方面的问题:铁水过冷倾向较大,极易产生影响材料机械性能的D、E型石墨;铁水纯净,异质结晶较少,导致孕育效果差,在同等成分条件下,铸件强度偏低铁质偏硬;收缩倾向较大,在高牌号灰铸铁中锰含量较高时,容易产生显微缩孔、缩松。
针对上述问题,应对的措施是: 在熔化后期增加一个高温保持时间,尽可能使各种炉料熔化的铁水晶粒均匀,尤其是细化石墨;适量增加外来异质(如硫化物),孕育效果,A型石墨的形成;控制高牌号灰铸铁的硫、锰含量及其比例,控制回炉料比例,达到合适成分。这些措施,对不同结构的铸件产品是有差别的,需在实践中掌握。
通过对钢件表面的加热、冷却而改变表层力学性能的金属热处理工艺。表面淬火是表面热处理的主要内容,其目的是获得的表面层和有利的内应力分布,以提高工件的能和性能。
对工件表面进行的金属热处理工艺。广泛应用于既要求表层具有高的、强度和较大的冲击载荷,又要求整体具有良好的塑性和韧性的零件,如曲轴、凸轮轴、传动齿轮等。表面热处理分为表面淬火和化学热处理两大类。
化学热处理
将工件置于含有活性元素的介质中加热和保温,使介质中的活性原子渗入工件表层或形成某种化合物的覆盖层,以改变表层的组织和化学成分,从而使零件的表面具有的机械或物理化学性能。通常在进行化学渗的前后均需采用其他合适的热处理,以便 大限度地发挥渗层的潜力,并达到工件心部与表层在组织结构、性能等的 佳配合。根据渗入元素的不同 ,化学热处理可分为渗碳 、渗氮、渗硼、渗硅、渗硫、渗铝、渗铬、渗锌、碳氮共渗、铝铬共渗等。
电子束热处理
早在上世纪70年始研究和应用。早期用于薄钢带、钢丝的连续退火,能量密度 高可达10W/cm。电子束表面淬火除应在真空中进行外,其他特点与激光相同。当电子束轰击金属表面时,轰击点被加热。电子束穿透材料的取决于加速电压和材料密度。例如,150kW的电子束在铁表面上的理论穿透大约为0.076mm;在铝表面上则可达0.16mm。
电子束在很短时间内轰击表面,表面温度升高,而基体仍保持冷态。当电子束停止轰击时,热量向冷基体金属传导,从而使加热表面自行淬火。为了地进行"自冷淬火",整个工件的体积和淬火表层的体积之间至少要保持5∶1的比例。表面温度和淬透还与轰击时间有关。电子束热处理加热,奥氏体化的时间仅零点几秒甚至 短,因而工件表面晶粒很细,硬度比一般热处理高,并具有良好的力学性。
版权所有©2025 天助网