大势智慧是一家专注于真实世界三维数字化重建及三维数据服务的高新技术企业,公司在城市高精度三维建模、模型应用及语义化理解和文化遗产数字化保护领域具有***的技术优势和丰富实践经验。
深度图像的获取
景物的深度图像由Kinect在Windows平台下拍摄获取,同时可以获取其对应的彩色的图像。为了获取足够多的图像,需要变换不同的角度来拍摄同一景物,以保证包含景物的全部信息。具体方案既可以是固定Kinect传感器来拍摄旋转平台上的物体;也可以是旋转Kinect传感器来拍摄固定的物体。
对于多帧通过不同角度拍摄的景物图像,各帧之间包含一定的公共部分。为了利用深度图像进行三维重建,需要对图像进行分析,求解各帧之间的变换参数。深度图像的配准是以场景的公共部分为基准,把不同时间、角度、照度获取的多帧图像叠加匹配到统一的坐标系中。计算出相应的平移向量与旋转矩阵,同时消除冗余信息。点云配准除了会制约三维重建的速度,也会影响到模型的精细程度和全局效果。因此必须提升点云配准算法的性能。
三维深度信息的配准按不同的图像输入条件与重建输出需求被分为:粗糙配准、精细配准和全局配准等三类方法。粗糙配准研究的是多帧从不同角度采集的深度图像。首先提取两帧图像之间的特征点,这种特征点可以是直线、拐点、曲线曲率等显式特征,也可以是自定义的符号、旋转图形、轴心等类型的特征。随后根据特征方程实现初步的配准。粗糙配准后的点云和目标点云将处于同一尺度(像素采样间隔)与参考坐标系内,通过自动记录坐标,得到粗匹配初始值。
libpcl filters:如采样、去除离群点、特征提取、拟合估计等数据实现过滤器;
libpcl features:实现多种三维特征,如曲面法线、曲率、边界点估计、矩不变量、主曲率,PFH和FPFH特征,旋转图像、积分图像,NARF描述子,RIFT,相对标准偏差,数据强度的筛选等等;
libpcl I/O:实现数据的输入和输出操作,例如点云数据文件(PCD)的读写;
libpcl segmentation:实现聚类提取,如通过采样一致性方法对一系列参数模型(如平面、柱面、球面、直线等)进行模型拟合点云分割提取,提取多边形棱镜内部点云等等;
libpcl surface:实现表面重建技术,如网格重建、凸包重建、移动zui小二乘法平滑等;
libpcl register:实现点云配准方法,如ICP等;
libpclkeypoints:实现不同的关键点的提取方法,这可以用来作为预处理步骤,决定在哪儿提取特征描述符;
libpcl range :实现支持不同点云数据集生成的范围图像。
版权所有©2024 天助网