双目立体视觉重建,在实际应用情况优于其他基于视觉的三维重建方法,也逐渐出现在一部分商业化产品上; 不足的是运算量仍然偏大,而且在基线距离较大的情况下重建效果明显降低 。 作为计算机视觉的关键技术之一,立体视觉法也其弊端。例如,立体视觉需要假设空间的平面是正平面,而实际情况却与此相差甚远。除此之外,匹配还存在歧义性:对于一幅图像上的某些特征点,另外的图像可能存在若干个与之相似的特征点。那么如何选取适配的匹配点,显得较为棘手。除此之外,对于如相机运动参数的确定、大型场景重建需要获取多帧图像等问题,也极大的影响了立体视觉的深层次应用。
对于多帧通过不同角度拍摄的景物图像,各帧之间包含一定的公共部分。为了利用深度图像进行三维重建,需要对图像进行分析,求解各帧之间的变换参数。深度图像的配准是以场景的公共部分为基准,把不同时间、角度、照度获取的多帧图像叠加匹配到统一的坐标系中。计算出相应的平移向量与旋转矩阵,同时消除冗余信息。点云配准除了会制约三维重建的速度,也会影响到模型的精细程度和全局效果。因此必须提升点云配准算法的性能。
大势智慧是一家专注于真实世界三维数字化重建及三维数据服务的高新技术企业,公司在城市高精度三维建模、模型应用及语义化理解和文化遗产数字化保护领域具有***的技术优势和丰富实践经验。
三维重建的分类根据采集设备是否主动发射测量信号,分为两类:基于主动视觉理论和基于被动视觉的三维重建方法。
主动视觉三维重建方法:主要包括结构光法和激光扫描法。
被动视觉三维重建方法:被动视觉只使用摄像机采集三维场景得到其投影的二维图像,根据图像的纹理分布等信息恢复深度信息,进而实现三维重建。
三维重建技术通过深度数据获取、预处理、点云配准与融合、生成表面等过程,把真实场景刻画成符合计算机逻辑表达的数学模型。这种模型可以对如文物保护、游戏开发、建筑设计、临床医学等研究起到辅助的作用。三维重建技术的重点在于如何获取目标场景或物体的深度信息。在景物深度信息已知的条件下,只需要经过点云数据的配准及融合,即可实现景物的三维重建。
版权所有©2024 天助网