三维深度信息的配准按不同的图像输入条件与重建输出需求被分为:粗糙配准、精细配准和全局配准等三类方法。粗糙配准研究的是多帧从不同角度采集的深度图像。首先提取两帧图像之间的特征点,这种特征点可以是直线、拐点、曲线曲率等显式特征,也可以是自定义的符号、旋转图形、轴心等类型的特征。随后根据特征方程实现初步的配准。粗糙配准后的点云和目标点云将处于同一尺度(像素采样间隔)与参考坐标系内,通过自动记录坐标,得到粗匹配初始值。
PCL(Point Cloud Library)是在吸收了前人点云相关研究基础上建立起来的大型跨平台开源C++编程库,它实现了大量点云相关的通用算法和gao效数据结构,涉及到点云获取、滤波、分割、配准、检索、特征提取、识别、追zong、曲面重建、可视化等。支持多种操作系统平台,可在Windows、Linux、Android、Mac OS X、部分嵌入式实时系统上运行。
PCL是一个模块化的C++模板库,其基于以下第三方库:Boost、Eigen、FLANN、VTK、CUDA、OpenNI、Qhull,实现点云相关的获取、滤波、分割、配准、检索、特征提取、识别、追zong、曲面重建、可视化等。
三维扫描是指集光、机、电和计算机技术于一体的高新技术,主要用于对物体空间外形和结构及色彩进行扫描,以获得物体表面的空间坐标。它的重要意义在于能够将实物的立体信息转换为计算机能直接处理的数字信号,为实物数字化提供了相当方便快捷的手段。三维扫描技术能实现非接触测量,且具有速度快、精度高的优点。而且其测量结果能直接与多种软件接口,这使它在CAD、CAM、CIMS等技术应用日益普及的今天很受欢迎。
版权所有©2025 天助网