莫尔条纹在生活中比较常见,如两层薄薄的丝绸重叠在一起,即可以看到不规则的莫尔(Morie)条纹。基本原理是将两块等间隔排列的直线簇或曲线簇图案重叠起来,以非常小的角度进行相对运动来形成莫尔条纹。因光线的透射与遮挡而产生不同的明暗带,即莫尔条纹。莫尔条纹随着光栅的左右平移而发生垂直位移,此时产生的条纹相位信息体现了待测物体表面的深度信息,再通过逆向的解调函数,实现深度信息的恢复。这种方法具有精度高、实时性强的优点,但是其对光照较为敏感,抗干扰能力弱。
对于多帧通过不同角度拍摄的景物图像,各帧之间包含一定的公共部分。为了利用深度图像进行三维重建,需要对图像进行分析,求解各帧之间的变换参数。深度图像的配准是以场景的公共部分为基准,把不同时间、角度、照度获取的多帧图像叠加匹配到统一的坐标系中。计算出相应的平移向量与旋转矩阵,同时消除冗余信息。点云配准除了会制约三维重建的速度,也会影响到模型的精细程度和全局效果。因此必须提升点云配准算法的性能。
SLAM和三维重建有什么区别?
SLAM:同步定位与地图构建;定谁的位?相机的位,相机在机器人身上,就是定机器人的位。建谁的地图?相机经过地方的地图。二者结合,才能确定机器人在某个地图中的具体位置,和这个场景(地图)下的连续运动轨迹。
三维重建(SFM):从运动恢复结构。我觉得更像是构建目标的三维模型。
说三维重建首先要从计算机视觉讲起。计算机视觉包含两个基本方向,物体识别和三维重建。图像识别的突破性进展源自于2012年卷积神经网络(CNN)的兴起。在此之前,计算机视觉的***研究方向是三维重建。因为在当时,对于图像的特征提取主要是通过三维重建的方法来定义和实现的。自2012年以来,图像的特征便逐渐由神经网络来自动学习。
三维重建的应用是很广泛的,对于自动驾驶、VR、AR等应用领域应用来讲,三维重建是***技术,并且实时三维重建是必然趋势,因为我们生活在三维空间里,必须将虚拟世界恢复到三维,我们才可以和环境进行交互。
版权所有©2025 天助网