大势智慧是一家专注于真实世界三维数字化重建及三维数据服务的高新技术企业,公司在城市高精度三维建模、模型应用及语义化理解和文化遗产数字化保护领域具有***的技术优势和丰富实践经验。
三维重建:有了比较准确的匹配结果,结合摄像机标定的内外参数,就可以恢复出三维场景信息。由于三维重建精度受匹配精度,摄像机的内外参数误差等因素的影响,因此首先需要做好前面几个步骤的工作,使得各个环节的精度高,误差小,这样才能设计出一个比较准确的立体视觉系统。
PCL框架包括很多***的算法和典型的数据结构,如滤波、分割、配准、识别、追zong、可视化、模型拟合、表面重建等诸多功能。在算法方面,PCL是一套包括数据滤波、点云配准、表面生成、图像分割和定位搜索等一系列处理点云数据的算法。例如PCL中实现管道运算的接口流程:
①创建处理对象,例如滤波、特征估计、图像分割等;
②通过setInputCloud输入初始点云数据,进入处理模块;
③设置算法相关参数;
④调用不同功能的函数实现运算,并输出结果。
3D信息采集常使用移动测绘系统(Mobile Mapping System),MMS包括移动激光扫描系统和数码相机。移动激光扫描系统主要由激光扫描仪和惯性导航系统组成,用于测量点的三维坐标和激光反射强度;数码相机用于测量点的三维坐标和颜色信息。根据移动激光扫描系统和数码相机采集的数据可以得到点云数据,包括三维坐标、激光反射强度、颜色信息。
半稠密重建:
通常是重建图像纹理或梯度比较明显的区域,这些区域特征比较鲜明。半稠密重建在直接法视觉SLAM里比较常见。重建的三维点云相对稠密,可以满足部分应用需求。
稠密重建:
稠密重建是对整个图像或者图像中的绝大部分像素进行重建。与稀疏、半稠密相比,稠密重建对场景的三维信息理解更quan面,更能符合应用需求。但是,由于要重建的点云数量太多,相对耗时。
版权所有©2025 天助网