普通旺铺
武汉实景三维技术推荐「大势智慧」
来源:2592作者:2021/11/14 2:14:00








对于多帧通过不同角度拍摄的景物图像,各帧之间包含一定的公共部分。为了利用深度图像进行三维重建,需要对图像进行分析,求解各帧之间的变换参数。深度图像的配准是以场景的公共部分为基准,把不同时间、角度、照度获取的多帧图像叠加匹配到统一的坐标系中。计算出相应的平移向量与旋转矩阵,同时消除冗余信息。点云配准除了会制约三维重建的速度,也会影响到模型的精细程度和全局效果。因此必须提升点云配准算法的性能。









PCL(Point Cloud Library)是在吸收了前人点云相关研究基础上建立起来的大型跨平台开源C++编程库,它实现了大量点云相关的通用算法和gao效数据结构,涉及到点云获取、滤波、分割、配准、检索、特征提取、识别、追zong、曲面重建、可视化等。支持多种操作系统平台,可在Windows、Linux、Android、Mac OS X、部分嵌入式实时系统上运行。

PCL是一个模块化的C++模板库,其基于以下第三方库:Boost、Eigen、FLANN、VTK、CUDA、OpenNI、Qhull,实现点云相关的获取、滤波、分割、配准、检索、特征提取、识别、追zong、曲面重建、可视化等。





libpcl filters:如采样、去除离群点、特征提取、拟合估计等数据实现过滤器;

libpcl features:实现多种三维特征,如曲面法线、曲率、边界点估计、矩不变量、主曲率,PFH和FPFH特征,旋转图像、积分图像,NARF描述子,RIFT,相对标准偏差,数据强度的筛选等等;

libpcl I/O:实现数据的输入和输出操作,例如点云数据文件(PCD)的读写;


libpcl segmentation:实现聚类提取,如通过采样一致性方法对一系列参数模型(如平面、柱面、球面、直线等)进行模型拟合点云分割提取,提取多边形棱镜内部点云等等;

libpcl surface:实现表面重建技术,如网格重建、凸包重建、移动zui小二乘法平滑等;

libpcl register:实现点云配准方法,如ICP等;

libpclkeypoints:实现不同的关键点的提取方法,这可以用来作为预处理步骤,决定在哪儿提取特征描述符;

libpcl range :实现支持不同点云数据集生成的范围图像。






大势智慧是一家专注于真实世界三维数字化重建及三维数据服务的高新技术企业,公司在城市高精度三维建模、模型应用及语义化理解和文化遗产数字化保护领域具有***的技术优势和丰富实践经验。




双目视觉和多目视觉理论上可准确的恢复深度信息,但实际中,受拍摄条件的影响,精度无法得到保证。单目视觉只使用单一摄像机作为采集设备,具有低成本、易部署等优点,但其存在固有的问题:单张图像可能对应无数真实物理世界场景(病态),故使用单目视觉方法从图像中估计深度进而实现三维重建的难度较大。


吴先生 (业务联系人)

15071485358

商户名称:武汉大势智慧科技有限公司

版权所有©2025 天助网