大势智慧是一家专注于真实世界三维数字化重建及三维数据服务的高新技术企业,公司在城市高精度三维建模、模型应用及语义化理解和文化遗产数字化保护领域具有***的技术优势和丰富实践经验。
三维重建技术的重点在于如何获取目标场景或物体的深度信息。在景物深度信息已知的条件下,只需要经过点云数据的配准及融合,即可实现景物的三维重建。基于三维重建模型的深层次应用研究也可以随即展开。人们按照被动式测量与主动式测量对目标物体深度信息的获取方法进行了分类。
三维深度信息的配准按不同的图像输入条件与重建输出需求被分为:粗糙配准、精细配准和全局配准等三类方法。粗糙配准研究的是多帧从不同角度采集的深度图像。首先提取两帧图像之间的特征点,这种特征点可以是直线、拐点、曲线曲率等显式特征,也可以是自定义的符号、旋转图形、轴心等类型的特征。随后根据特征方程实现初步的配准。粗糙配准后的点云和目标点云将处于同一尺度(像素采样间隔)与参考坐标系内,通过自动记录坐标,得到粗匹配初始值。
双目重建通常又称之为,立体匹配、双目匹配、双目立体视觉、静态匹配等。
根据所用的相机差异,比如zhen孔相机、鱼眼相机,实现略有差别。根据重建时匹配方式的不同,又可以分为全局、本全局、局部匹配。
其过程可描述如下:利用左右相机得到的两幅矫正图像,通过一幅图在另一幅图上找匹配,然后根据三角测量原理恢复出环境三维信息。在鱼眼相机的匹配中,也有不矫正图像,直接匹配的做法,这样做需要计算图像极线。
由于整个匹配的过程只需一个时刻的左右图像,所以也有人称为静态立体视觉。
三维重建作为环境感知的关键技术之一,可用于自动驾驶、虚拟现实、运动目标监测、行为分析、安防监控和重点人群监护等。现在每个人都在研究识别,但识别只是计算机视觉的一部分。真正意义上的计算机视觉要超越识别,感知三维环境。我们活在三维空间里,要做到交互和感知,就必须将世界恢复到三维。所以,在识别的基础上,计算机视觉下一步必须走向三维重建。
版权所有©2025 天助网