变压器噪声治理有效治理是关键
变压器噪声治理是由变压器通过空气向四周发射的噪声是由两部分噪声合成的,一部分是由于箱壁振动而产生的本体噪声;另一部分是由于冷却风扇和油泵振动产生的冷却装置噪声。
变压器本体噪声完全取决于铁心的磁致伸缩振动。铁心的磁致伸缩振动是通过两条路径传递给油箱的,一条是固体传递路径——铁心的振动通过其垫脚传至油箱;另一条是液体传递路径——铁心的振动通过绝缘油传至油箱。(4)混响噪声:一是物体和墙壁反射,二是减振方式的激发,会增加生能的密度,声波入射到房间内表面,一部分被反射,一部分被吸收的多少取决于室内表面积的吸声系数。而这两条路径传递过来的振动能量,使箱壁振动而产生本体噪声。通过空气,本体噪声以声波的形式均匀地向四周发射。同样,冷却风扇和油泵振动产生的噪声,也是通过空气以声波的形式向四周发射。在变压器噪声的发射过程中,噪声会随发射距离的增加而逐渐减弱。另外,在噪声发射过程中,往往会遇到障碍物,当障碍物的尺寸小于噪声的波长时,噪声会绕过障碍物;当障碍物的尺寸大于噪声的波长时,一部分噪声将被障碍物吸收,一部分噪声将被障碍物反射回去,其余部分才穿过障碍物发射出去。
噪声治理技术的发展方向是很大的
前面先容的噪声治理方法,固然可以使冰箱压缩机的噪声符合国家的划定,但是跟着数值计算和噪声控制新技术的不断发展,还可以进一步降低冰箱压缩机的噪声。
目前电子计算机的高速发展,应用有限元/边界元工具可以有效的降低冰箱压缩机的噪声。传统的方法是靠经验或者通过简朴结构的数学模型来模拟实际情况,在这个过程往往需要良多的假设前提,这样得到的结果跟实际情况的差距往往比较大,然后再通过试验进行验证,研究开发周期长。热泵机组噪声的产生:(1)泵的噪声:泵工作时,连续出现动力压强脉冲,从而激发泵体和管路系统的阀、管道等部件振动,由此而辐射噪声。利用现有噪声软件可以大大进步分析的正确度,特别是针对复杂的结构,采用虚拟样机技术,大大缩短分析时间。如对于复杂的扩张式抗性消声器,用经典的公式很难计算消声量,利用有限元软件对复杂的扩张式消声器进行分析和优化,弄清晰其频率特性,就可以突破传统的消声器外形,设计***的消声器外形,进一步进步消声量。在壳体优化方面,利用有限元计算其固有频率和模态,计算在激励下的振动响应,然后利用边界元技术,计算在该响应下的壳体辐射声场,进行敏捷度分析,从而可以的降低壳体辐射的噪声。同样,对于压缩机其他部件,也可以猜测其辐射声场。有限元和边界元工具今后在噪声控制方面的应用越来越广泛。有源噪声与振动控制技术——噪声主动控制(ActiveNoiseControl,简称ANC),是当前的噪声控制技术中提高前辈的研究方向,由德国物理学家PaulLeug于1933年提出的。其基本原理是在噪声的声波上叠加一个声波,该声波波形的振幅与噪声一致,而相位则正好与噪声相反,使两者相互抵消,达到消除噪声的目的。
吸声法
吸声法的使用,也是需要用到多孔吸声材料的。方法三、管道隔振处理与泵组连接的管道增加(更换)橡胶软连接,一般软连接长度较短,弹性较差,致使整体隔振效果不理想,更换后隔振效果将明显增加。所谓的吸声,就是声波被物体吸收后,又被转化成为了另外各种不同形式的能量,这个过程主要是在物体的表面进行的。吸声系数决定了多孔吸声材料的吸声性能,吸声系数以及多孔吸声材料的吸声性能是成正比关系的,即吸声的系数越小,多孔吸声材料的吸声性能也就越差。对于多孔吸声材料的吸声性能的确定,也受到了一些因素的影响,比如多孔吸声材料的结构、多孔吸声材料的特性、声波在传入时候的角度,还有就是声波本身的频率也是会有一定的影响。
版权所有©2025 天助网