COHPAC方案是静电除尘器和广东除尘设备的系列组合。由于项目组为企业开发的过滤筒除尘器是顺风过滤筒除尘器,项目组成员在优化除尘器结构时,受到进气方式的限制。当处理不同类型的烟气时,系统通过调整自身的负荷,可以保证醉大的除尘效率。COHPAC袋式除尘器布袋工作区的负荷相较小,烟气流动阻力较小。该过滤器的烟气流速可提高到纯布袋式过滤器的4%。除尘效率大大提高,烟气治理***提高。COHPOC型袋式除尘器中80%的静电场90%的灰负荷,剩余的灰尘从袋式过滤器中捕获tl6。所有烟气都通过袋区,对于静电场过滤和灰尘净化的阶段引起的颗粒逃逸问题,不需要特别的设计和处理。
同时,没有考虑广东除尘设备对袋子的破坏作用。COHPOC外部系列袋式除尘器需要一定的空间结构,因此更适合于新扎电厂或原电厂除尘器的改造。滤筒间气流分布不均匀,会导致各滤筒表面灰尘沉积不均匀,造成处理气流。对于空间资源有限的电厂,可以考虑采用Zha COHPOC内置系列袋式除尘器。内部串联连接的原理与外部串联连接的原理相似。布袋用于静电场背面代替静电场除尘部件。同时,通过广东除尘设备挡板将静电区域和袋区域分开,防止静电对袋的损坏。AHPC混合袋式除尘器和广东除尘设备的内部结构完全不同。在AHPC中电场和布袋交替布置。当烟气通过入口进入除尘器时,它首先通过静电场,在这个阶段大部分颗粒通过静电场捕获。然后,烟气通过多孔板均匀地过滤在袋子表面。当在袋区用脉冲清洗烟气时,电除尘器区域能有效地捕获过滤后的尘埃颗粒,防止尘埃颗粒粘附到袋表面形成尘埃层。通过静电场与袋面积的相互作用,研究了广东除尘设备对滤光片的影响。50μm的除尘效率为99.98%,PM2.5的除尘效率为99.99%。
粉尘的物理化学性质影响广东除尘设备效率的粉尘的物理化学性质主要有粘性、密度、粒径分布和比电阻11。由于滤波器内部流场的复杂性,用实验方法测量滤波器内部流场的数据比较困难。这些特性主要影响二次扬尘、集尘和电晕除尘效率。在实际生产中,集尘器中的尘埃粒子的充电时间一般比理论上要长,因为尘埃粒子在完全充电之前需要在电场中移动一定距离,所以除尘效率与理想状态不同。气流短路、气流湍流以及广东除尘设备内部结构设计有时导致烟气从灰斗顶部或电场区直接流出,而不是通过电场区。
在广东除尘设备应用中,通常合理地布置挡板,以减少短气流路径的影响。因此,这种腐蚀环境被认为是表征电除尘器钢构件耐久性的综合定性指标。目前,国内外对除尘器内气流分布的研究主要采用物理模型试验和数值模拟的方法。这两种方法相互补充,相互借鉴。数值模拟计算可以减少大量的实验工作,缩短研究周期,迭代更新,发现新的问题和方法,了解广东除尘设备在更完整的表面上的内部流场。然而,数值模拟结果是否正确,是否与实际生产中遇到的问题相同,都需要物理模型试验来验证。通过物理模型试验,可以更新数值模拟方法,修正模型问题,提高数值计算的精度。广东除尘设备内气流分布的主要研究内容是气流的均匀性。为了实现气流分布与阻力的平衡,有必要对多孔板的阻力特性进行优化。
为了调节广东除尘设备内气流的均匀性,提高除尘器的效率,本文以山西某350MW燃煤电厂的布袋除尘器为原型,采用多孔板和流量调节板的多种安装方式来实现气流的均匀分布。采用旋转电极技术,通过广东除尘设备螺旋刷将板上的灰渣直接移到灰斗,不会引起二次扬灰。并根据1:14_折减率建立物理模型。节日。经过多次试验,广东除尘设备选择了多孔板与流量调节板导流板角度的醉佳组合方案,对广东除尘设备内的空气分布进行了调整,取得了满意的效果。本文研究了多孔板在不同环境中的阻力特性。分为两部分:影响广东除尘设备多孔板在环境温度、单相流体介质环境下的阻力特性的因素和影响多孔板在高温环境下阻力特性的因素。本文建立了多孔板阻力特性物理模型试验系统。部分通过改变系统的雷诺数或多孔板的相对厚度来研究多孔板的阻力特性。第二部分,系统流体在系统流体中加热,模拟电厂广东除尘设备内的流体环境,对高温环境有很大的影响。
影响广东除尘设备孔板阻力特性的因素。Atsumi于1975年提出了一种测定多孔介质平均渗透率的方法。本文的具体研究内容和结论如下:广东除尘设备通过设置流量调节板和调整导风板的角度,可以有效地减小除尘器各流室的流量偏差,从而调节整体气流均匀性,提高除尘效率。本文通过增加流量调节板和多次实验,确定了导流板的角度。流量偏差从7.3%降至0.9%。安装不同形状的流量调节板是调节气流均匀性的有效方法。在广东除尘设备内安装合适的多孔板,也是调整内部气流分布均匀性的有效方法。多孔板层数越多,流场分布越均匀。但随着多孔板层数的增加,除尘器阻力增大。目前,三层多孔板是调节除尘器内气流分布均匀性的醉佳途径。
立式袋式除尘器是静电除尘器与传统袋式除尘器的组合。潍坊鑫利特确定了上进气滤筒的圆形结构与下进气滤筒的方形结构相比有了很大的进步,广东除尘设备进风口尺寸的影响,导向板的布置,散粒器的合理选择和布置进一步探讨了G装置对滤筒内流场分布的均匀性,找到了一种使流场分布更加均匀的较好方案。电场部分与静电除尘器一致,广东除尘设备布袋区滤袋与水平面垂直。目前,主流立式袋式除尘器分为分体式和整体式两种。它们都是“前后口袋”的布局。根据两台立式布袋除尘器的布置特点,一对一型除尘器更适合于旧型除尘器的改造,占地面积小,阻力损失小。广东除尘设备改造中,宜采用一对一结构。立式布袋复合除尘器主要由前静电除尘器和后布袋除尘器组成。前者继承了静电除尘器电场的优势。它能收集80-90%的粉尘,并充入细粉尘。这样,在后一阶段只能达到常规布袋除尘的五分之一左右。
一方面大大降低了后袋除尘区的粉尘浓度,同时也降低了滤袋上粉袋的阻力,从而降低了广东除尘设备的整体压力损失,达到排放浓度小于20mg/Nm3的环境要求。国际上的研究也局限于采用单相流动介质——空气或水的模拟或实验,很少有人模拟集尘器的高温粉尘环境来研究影响多孔板阻力系数的因素。改造总体方案采用两电两袋方案,对一、二次电场进行修复,将原工频电源转换为高频电源,去除原三电场和四电场内件,并利用其空间布置布袋。改造方案的优点是:(1)无论煤种如何变化,保证出口排放量小于20mg/Nm3。(2)由于改造是在原电除尘器内部进行的,无需更换电除尘器外部设备,改造周期为50-60天。广东除尘设备改造方案的缺点是:(1)主体阻力较大,运行成本较高;(2)换袋成本较高,旧滤袋利用率较小;(3)滤袋材料对烟气性质更为敏感,臭氧腐蚀、酸腐蚀等问题。腐蚀突出,导致滤袋实际使用寿命难以达到设计值。
版权所有©2025 天助网