目前,我国绝大多数热风炉的燃烧控制主要还是采用手动控制,煤气流量和空气流量的大小由人工凭经验手动调节,因此,供热温度波动较大,对热风炉的寿命也有很大影响,并造成煤气的巨大浪费。数学模型法能将换炉、送风结合为一体,实现全闭环自动控制,但由于检测点多,在生产条件不够稳定、装备水平较低的热风炉中不易实现;我们可以利用热风炉烟气的热量进行预热,来弥补因热风炉燃料比降低以后煤气热值降低所带来的燃烧温度偏低的问题。
热风炉在温室中的应用:温室加热的方式有很多:有热温加温、热水加温、蒸汽加温等。热风炉输入干热空气,而将室内潮湿空气从回风口抽出室外,能在半小时内使室内湿度降低,使病菌处在不利于孢子发芽的温度下,从而抑制各种病害的发生于发展。人工智能方法主要有神经网络和模糊控制,神经网络控制对热风炉燃烧过程有极强的自学习能力,但抗干扰能力较弱,而模糊控制不需数学模型,有较强的抗干扰能力且易于实现,因此尤其适用于热风炉这类难以确切描述的非线性系统。
我们可以利用热风炉烟气的热量进行预热,来弥补因热风炉燃料比降低以后煤气热值降低所带来的燃烧温度偏低的问题。直燃式燃煤热风炉是一种以煤为燃料,燃烧产生的高温烟气配合一定的新鲜空气以提供符合工艺要求的热源设备,其可以连续提供恒温、恒压的热空气。热风炉增温系统还有降湿、防病的作用。栽培的作物浇水后,室内湿度很高,从而诱发各种病虫害发生。
浅谈一种直接式燃油热风炉的构造:这种直接式燃油热风炉借助燃烧器在燃烧室中燃烧,所产生的高温烟气与来自室外且经过环形孔板均流后再环形通道内由前后流动的空气在混合室中混合,达到所需温度后由热风出口输送到用热设备。热风炉根据燃料的不同可分为固体燃料热风炉、液体燃料热风炉、气体燃料热风炉。 热风炉的燃烧过程燃烧过程对应着蓄热室的蓄热过程,它分为加热期和拱顶温度管理期。在加热期,蓄热室拱顶的温度很低,废气的热量大部分被拱顶吸收,拱项的温度上升迅速,蓄热室中下部温度则上升缓慢。