压力控制,聚合温度恒定时,在聚合单体为气相时主要通过催化剂的加热量和聚合单体的加热量俩控制聚合压力,也就是聚合温度。聚合釜气相中,不凝性惰性气体的含量过高是造成聚合釜压力超高的原因之一。此时需炬,以降低聚合釜的压力。
料位控制,聚合釜料位应该严格控制。一般聚合釜液位控制在70%左右,通过聚合浆液的出料速率来控制。(3)加热指示灯亮,但无加热电压,则一般为加热保险丝烧断,固态调压器、调压线路及控制线路的故障。连续聚合时聚合磁力反应釜必须有自动料位控制系统,以确保料位准确控制。料位控制过低,聚合产率低;料位控制过高,甚至满釜,就回造成聚合浆液进入换热器、风机等设备中,造成事故。
聚合浆液浓度控制,浆液过浓、造成搅拌器电动机电流过高,引起超负载跳闸、停转,就会造成磁力反应釜内聚合物结块,甚至引发飞温、爆聚事故。停搅拌是造成爆聚事故的主要原因之一。控制浆液浓度主要通过控制溶剂的加入量和聚合产率来实现。
考虑到低温压力容器的界限问题因素,GB150《钢制压力容器》已经对低温压力容器界限进行了如下修正:
a) 使用温度低于0℃时:厚度大于25mm的20R,厚度大于38mm的16MnR,15MnVR和15MnVNR,任意厚度的18MnMoNbR、13MnNiMoNbR和Cr-Mo钢板;
b) 使用温度低于-10℃时:厚度大于12mm的20R,厚度大于20mm的16MnR,15MnVR和15MnVNR。
上述范围内的压力反应釜容器的低温冲击功指标根据钢板标准抗拉强度下限值按附录C确定。完成上述操作后,关闭所有阀门,按设计压力做气密性试验,保压30分钟,无泄漏方可进行后续操作。有提案者建议将此范围内的压力实验室反应釜容器列入低温压力容器的管辖范围,其制造、检验等方面的要求也应满足GB150-附录C的规定,目前该提案已提交技术人员审查。
高压密封磁力反应釜材料:主要采用
1cr18Ni10Ti 不锈钢制作,并可根据不同介质要求制作钛材( TA2 )、镍( Ni6 )及复合钢板,釜体结构有平盖式高压磁力反应釜、凸形盖高压密封磁力反应釜以及带人孔的闭式反应釜体,高压密封磁力反应釜盖上的开孔可根据用户要求进行设计;加热方式有夹套蒸气式不锈钢磁力反应釜、夹套电加热不锈钢反应釜,外盘管加热不锈钢磁力反应釜等形式供用户订货时任意选配。 对有抛光要求的反应釜体内表面,可达到 以上的镜面抛光水平,对高粘度的物料加工成锥形底,便于放料、清洗。磁力反应釜磁力传动技术反应釜具有以下应用特点(1)磁力反应釜磁力传动传递力矩,反应釜是利用磁力的超矩作用特性而实现的。
反应釜工艺方面焊接时影响产生热裂纹的工艺因素很多,如接头形式、工艺规范、预热温度、结构刚度和工件的夹固条件等都对反应釜焊缝的抗热裂能力有一定影响。
1.反应釜焊接工艺和规范。采用大电流、快速焊、单层焊、直线运条前进等,容易引起反应釜焊接应力的工艺措施会促使产生热裂纹。故在条件允许时,应尽量采用小电流、多层焊,以减少热裂纹的倾向。
焊接结构刚度较大的工件时,常采用预热的方法。预热一方面可以减少冷却速度,减缓在冷却过程中产生的拉伸应力,另一方面也可改善结晶条件,减少化学和物理上的不均匀性。再松动转动座上的紧固手扭,按住转动按钩转动倾倒手轮,使磁力反应釜保证一定的倒料角度,再松开转动按钩即可倒料。预热温度要根据钢种的化学成分和结构刚度的大小而定。钢种含碳量越高,其他合金元素越多,工作刚度越大,则要求预热温度越高。
2.反应釜焊接次序。同样的反应釜焊接性能材料和焊接规范,如果反应釜焊接次序不同,产生热裂纹倾向也不同。原因是焊接次序不同产生的焊接应力不同。应采用合理的反应釜焊接次序来减小焊接应力。