分析总结了电厂动态可调轴流风机存在的主要问题及有效的处理措施,使通风机维修人员能够及时解决问题,较大限度地减少电厂的损失。电厂动态可调轴流风机一般由以下部分组成:转子、进气箱、壳体、扩散器、中间轴、联轴器、电机和液压润滑油站。转子套包括轴承箱、叶轮和液压调节装置。
通风机叶轮常见问题及处理措施。
(1)叶片漂移与相邻叶片不同步:由于调节杆螺钉与叶柄的拧紧力矩不足,叶片漂移,无法锁定,适当增大螺栓扭矩即可拧紧;
(2)叶片磨损:诱导D前除尘装置效果差。排风机会造成叶片不规则磨损,导致叶轮不平衡,提高除尘器的除尘效果,改善叶片表面特殊材料的喷粉涂层,可有效提高叶片的耐磨性。
(3)通风机叶片出现裂纹。如果在运行过程中杂质进入铝叶片的叶轮,即使是一个小螺杆,叶片也会在杂质的冲击下开裂或断裂,甚至会发生更严重的安全事故。因此,在风机运行过程中,会出现裂纹。必须避免有杂物进入;钢叶片裂纹主要与材料选择、材料切削方式和翼型选择有关;
(4)滑块磨损:滑块材料柔软或推盘光洁度不够,不易使滑块磨损,引起风机振动,可通过提高滑块材料的硬度和推动盘的光洁度;
(5)通风机叶片卡涩:在叶柄轴承中润滑油添加不足,容易导致滚珠燃烧和轴承叶柄损坏,导致叶柄卡涩。同时,如果轴承和滚珠的内外套有裂纹、斑点、磨损锈迹、过热变色和间隙,应更换新轴承,以确保叶片转动灵活。
在采集到通风机的振动信号中,电机的水平振动和径向振动是整个风机严重的振动。在1159.86赫兹时,振动幅度大,与两级叶轮通过频率之和一致。高频频率是由于叶片在旋转过程中周期性地通过空气中固定位置的压力波动引起的,等于叶片的旋转频率乘以叶片数。通风机叶片通过频率的计算公式为f=m.n/60,其中m为动叶片数,n为风机转速,风机两级叶片数为14和10,两级叶片通过频率分别为676.67hz、483.33hz,两个频率之和为1160hz。通过该频率时,叶片的振动加速度为2.0g,说明叶片与风机外壳的动、静干扰对气流波动影响较大。
从轴向不同位置的振动来看,通风机进出口振动小。入口主振频率分别为47.27Hz和96.18Hz,分别为风机的基频和双频。入口流速为层流状态,振动为机械振动。出口处主要振动频率为189.91赫兹、1159.86赫兹、1351.40赫兹和2313.19赫兹,主要为风机基频的四倍和气流脉动引起的高频振动。入口的振动略强于出口的振动。级叶轮旋转加速后,通风机内部流场变得更加复杂,而第二级叶轮反向加速时,叶片迎角较大,气动力影响较大,通过第二级叶轮等流量后流场趋于稳定。一级叶轮的振动与电机的振动相似,主要是由复杂流场的气动力和风机基频的四、五倍频率振动引起的。二级叶轮高频宽带振动的振幅远大于风机基频机械振动的振幅。
通风机的声压级可以反映人耳对声强的响应。四个监测点的声压级可用风机内两种叶片计算,比较通风机四个监测点的声压级,可以看出叶轮的声压级在穿孔前后高,低位置在风机入口前1米,因为旋转噪声和涡流噪声都集中在叶轮的旋转区域。风扇转速2900r/min,基频48.3Hz。在原叶片的声压级谱中,中低频有三个高峰值频率,分别对应于叶10片叶片的483Hz通过频率、第二叶14片叶片的676.7Hz通过频率和两片叶片的1159.7Hz通过频率。穿孔后,通风机叶片周围的流动得到改善,旋转噪声明显降低。两级叶轮中间位置气动噪声的1/3倍频程分析如图5所示。1/3倍频程是指将频率范围从20Hz到20kHz分为30个部分。倍频程的振幅越大,频率对总声压级的贡献越大。当风机采用原叶片时,通风机叶片的频率噪声和宽带噪声对声压值影响较大。采用多孔叶片后,风机的声压级在整个频率范围内随振幅的不同而降低,中、低频段噪声降低幅度大,宽带噪声成为风机的主要噪声源。