数字IC密码算法介绍
数字IC密码算法主要分三类:对称算法、非对称算法、杂凑算法。
SM1对称密码算法:一种分组密码算法,分组长度为128位,密钥长度为128比特。
主要产品有:智能IC卡、智能密码钥匙、加密卡、加密机等安全产品。
SM2椭圆曲线公钥密码算法(非对称):一种椭圆曲线公钥密码算法,其密钥长度为256比特。
SM3杂凑算法:一种密码杂凑算法,其输出为256比特。
适用于SM22椭圆曲线公钥密码算法中的数字签名和验证。
SM4对称密码算法:一个分组算法,用于无线局域网产品。
SM7对称密码算法:一种分组算法,分组长度为128比特,密钥长度为128比特。
适用于非IC卡应用,例如门禁卡、参赛证、门票,支付类校园一卡通,公交一卡通,企业一卡通
**SM9非对称算法:**是基于对的标识密码算法,与SM2类似。区别于SM2算法,SM9算法是以用户的标识(例如:、邮箱等)作为公钥,省略了交换数字证书公钥过程。
适用于云存储安全、物联网安全、电子邮件安全、智能终端保护等。
IC半导体的基础知识(一)
一、物理基础 所有物质按照导电能力的差别可分为导体、半导体和绝缘体三类。半导体材料的导电性能介于导体和绝缘体之间。或者说,半导体是介于导体和绝缘体之间的物质。常用的半导体材料有:元素半导体硅(Si)和锗(Ge)、化合物半导体(GaAs)等。导体的电阻率在10-4Ω•cm以下,如铜的电阻率为1.67×10-6 Ω•cm,绝缘体的电阻率在1010 Ω•cm以上,半导体的电阻率在10-3Ω•cm~109Ω•cm之间,与导体的电阻率相比较,半导体的电阻率有以下特点。02工艺特殊少用CMOS工艺数字IC多采用CMOS工艺,而模拟IC很少采用CMOS工艺。
1.对温度反映灵敏
导体的电阻率随温度的升高略有升高,如铜的电阻率仅增加0.4%左右,但半导体的电阻率则随温度的上升而急剧下降,如纯锗,温度从20℃上升到30℃时,电阻率降低一半左右。
2.杂质的影响显著
金属中含有少量杂质其电阻率不会发生显著变化,但是,极微量的杂质掺在半导体中,会引起电阻率的极大变化。如在纯硅中加入百万分之一的硼,就可以使硅的电阻率从2.3×105 Ω•cm急剧减少到0.4 Ω•cm左右。
3.光照可以改变电阻率
例如,有些半导体(如)受到光照时,其导电能力会变得很强;当无光照时,又变得像绝缘体那样不导电,利用这种特性可以制成光敏元件。而金属的电阻率则不受光照的影响。
温度、杂质、光照对半导体电阻率的上述控制作用是制作各种半导体器件的物理基础。
IC半导体的基础知识(四)
P型半导体
在纯净的硅(或锗)晶体内掺入微量的三价元素硼(或铟),因硼原子的外层有三个价电子,当它与周围的硅原子组成共价键结构时,会因缺少一个电子而在晶体中产生一个空穴,掺入多少三价元素的杂质原子,就会产生多少空穴。因此,这种半导体将以空穴导电为其主要导体方式,称为空穴型半导体,简称P型半导体。必须注意的是,产生空穴的同时并没有产生新的自由电子,但原有的晶体仍会产生少量的电子空穴对。不管是在空气流通的热带区域中,还是在潮湿的区域中运输,潮湿都是显著增加电子工业开支的原因。
从以上分析可知,不论是N型半导体还是P型半导体,它们的导电能力是由多子的浓度决定的。可以认为,多子的浓度约等于掺杂原子的浓度,它受温度的影响很小。在一块硅片上采用不同的掺杂工艺,一边形成N型半导体,一边形成P型半导体,则在两种半导体的交界面附近形成PN结;LVS主要是将版图和电路网表进行比较,来保证流片出来的版图电路和实际需要的电路一致。PN结是构成各种半导体器件的基础。
1.PN结的形成
在一块硅或锗的晶片上,采取不同的掺杂工艺,分别形成N型半导体区和P型半导体区。由于N区的多数载流子为电子(即电子浓度高),少子为空穴(空穴浓度低),而P区正相反,多数载流子为空穴(即空穴浓度高),少子为电子(电子浓度低);现在的嵌入式系统,电子电路设计一般都是数字电路,只有数字信号,高低两种电平,只要分析输入输出信号的逻辑关系,不需要自己设计复杂的电子电路,简化了硬件设计的工作量、复杂度和调试周期。在P区与N区的交界面两侧,由于浓度的差别,空穴要从浓度高的P区向浓度低的N区扩散,N区的自由电子要向P区扩散,由于浓度的差别而引起的运动称为扩散运动。这样,在P区就留下了一些带负电荷的杂质离子,在N区就留下了一些带正电荷的杂质离子,从而形成一个空间电荷区。这个空间电荷区就是PN结。在空间电荷区内,只有不能移动的杂质离子而没有载流子,所以空间电荷区具有很高的电阻率。
大功率模拟集成电路
随着集成电路产业快速发展,集成电路的集成度越来越高,内部结构也越来越复杂,对于测试的要求也越来越高。集成电路测试技术作为保障集成电路性能、质量的重要技术之一也得到了很快的发展。直流参数测试是集成电路测试技术的重要组成部分,能够快速有效的检测芯片的性能,受到集成电路测试行业的高度重视。实现了一种大功率直流参数测试的研制,可以实现高电压、大电流的直流参数测试,具有很高的测试精度,而且具有一定的通用性。第0位是1,它的权重是2?,相乘为1×2?,后将每一位的乘积按十进制运算相加。
首先根据文献资料分析本课题研究的背景以及意义,介绍了集成电路测试系统组成、分类以及国内外的发展状况。介绍了集成电路直流参数测试的基本原理与方法,在此基础上分析了大功率模拟集成电路直流参数测试的设计需求,提出了设计需要实现的功能与设计指标,构建了大功率模拟集成电路直流参数测试实现的原理方案;设计了接口控制模块、逻辑控制模块与精密测量单元,详细分析了精密测量单元的工作原理,并搭建了具体的硬件电路;根据硬件所需要实现的测试功能,设计了测试底层驱动函数,提供给应用软件测试函数接口实现可编程测试,并对测试进行了软件校正;后文章给出了功能测试数据与报告,分析了集成运算放大器的测试原理和方法,并给出了测试过程与测试数据,表明测试性能达到了比较好的效果。设计的大功率模拟直流参数测试模块,已经被广东某集成电路制造企业使用,使用效果表明测试模块性能稳定,通用性强,成本低,特别适合国内集成电路企业的应用,具有比较高的实用价值。当我们对一个设计的引脚名字进行改动的时候,我们无须改动驱动这个接口的方法,而是只需要在例化该事务交易处理器的时候,给虚接口绑定对应连接的实体接口即可。