




在任何一种设备的使用中,其功率的测定都相当重要,搅拌器也不例外,其功率的测定可以说就是一种物理跟数学相结合的计算,从而得出设备的使用效率,关键是对测定的整个过程,对此可通过下述进行了解。
1、应变测量法
对于功率较大的搅拌体系,采用动态应变仪测量搅拌轴的扭矩,并以此来计算搅拌功率。其基本原理是搅拌轴的扭矩大小与切应变成正比,只要测出搅拌轴外表面上切应变大小,即可计算出扭矩。根据扭矩与切应变之间的换算关系,经数据处理后可方便地得出搅拌轴的扭矩值,再扣除用空载实验测出的密封、轴承等处的摩擦扭矩,就可的到搅拌时实耗的扭矩大小。
2、对于规模较小的化工搅拌装置体系我们可以这样当电动机工作时,作用在电动机转子上的电磁矩和作用于电动机定子上的电磁矩总是大小相等,方向相反的。所以只要测出作用于定子上的扭矩就等于测得了作用于转子上的扭矩,再扣除转子轴承上的摩擦扭矩后,就能测出搅拌的实耗扭矩。由扭矩和搅拌转速便可以计算出搅拌功率。
在对搅拌器进行测定时,可按照上述所提供的方法,但是在测定时,切勿盲目,一切按照实际情况进行,避免测定结果不准确,从而影响设备的使用。
在侧入式搅拌器搅拌过程中,一般认为粘度小于5Pa/s的为低粘度流体,对于低粘度介质,用小直径的高转速的侧入式搅拌器就能带动周围的流体循环,并至远处。而高粘度介质的流体则不然,需直接用侧入式搅拌器来推动。
适用于低粘和中粘流体的叶轮有桨式、开启涡轮式、推进式、长薄叶螺旋桨式、圆盘涡轮式、布鲁马金式、板框桨式、三叶后弯式、MIG式等。适用于高粘和特高粘流体的叶轮有螺带式叶轮、螺杆式、锚式、框式、螺旋桨式等。有的流体粘度随反应进行而变化,就需要用能适合宽粘度领域的叶轮,如泛能式叶轮等。
立式搅拌器包含有电动机、拌和筒、传动轴、拌和桨叶,其间在传动轴上还松套有一反向拌和桨叶,该反向拌和桨叶的轴套经过链条与坐落传动轴一侧的中心轴上端的链轮相连,与链轮同轴的齿轮则与固定在传动轴下端的自动齿轮相啮合。本产品是由两个拌和桨叶是反向滚动的,使得在拌和过程中,质料能在两个拌和桨叶之间构成对流,然后处理了传统设备对质料搅而不拌的问题。