日本超精密加工初从铝、铜轮毂的金刚石切削开始,而后集中于计算机硬盘磁片的大批量生产,随后是用于激光打印机等设备的多面镜的快速金刚石切削,之后是非球面透镜等光学元件的超精密切削。l982年上市的EastnlanKodak数码相机使用的一枚非球面透镜引起了日本产业界的广泛关注,因为1枚非球面透镜至少可替代3枚球面透镜,光学成像系统因而小型化、轻质化,可广泛应用于照相机、录像机、工业电视、机器人视觉、CD、VCD、DvD、投影仪等光电产品。因而,非球面透镜的精密成形加工成为日本光学产业界的研究热点。
尽管随时代的变化,超精密加工技术不断更新,加工精度不断提高,各国之间的研究侧重点有所不同,但促进超精密加工发展的因素在本质上是相同的。这些因素可归结如下。
对产品的追求。机构运动精度的提高,有利于减缓力学性能的波动、降低振动和噪声。对内燃机等要求高密封性的机械,良好的表面粗糙度可减少泄露而降低损失。后,航空航天工业要求部分零件在高温环境下工作,因而采用钛合金、陶瓷等难加工材料,为超精密加工提出了新的课题。
介绍下精密机械加工的工艺吧!
我们把机械加工分为以下四个阶段:
一、先面后孔
对于箱体、支架和连杆等零件应先加工平面后加工孔。这样就可以以平面定位加工孔,保证平面和孔的位置精度,而且对平面上的孔的加工带来方便。
二、先加工基准面
零件在加工过程中,作为定位基准的表面应首先加工出来,以便尽快为后续工序的加工提供精基准。称为“基准”。
三、光整加工
主要表面的光整加工(如研磨、珩磨、精磨﹨滚压加工等),应放在工艺路线后阶段进行,加工后的表面光洁度在Ra0.9um以上,轻微的碰撞都会损坏表面,在日本、德国等国家,在光整加工后,都要用绒布进行保护,不准用手或其它物件直接接触工件,以免光整加工的表面,由于工序间的转运和安装而受到损伤。
四、划分加工阶段
加工质量要求高的表面,都划分加工阶段,一般可分为粗加工、半精加工和精加工三个阶段。主要是为了保证加工质量;有利于合理使用设备;便于安排热处理工序;以及便于时发现毛坯缺陷等。