煤矿生产中, 掘进工作面是主要的产尘环节。粉尘不仅严重危及采掘工作面人员的身体健康,而且容易造成重大事故隐患。采用除尘风机对掘进工作面进行降尘是主要降尘方式之一。但是,由于工作面粉尘极易随风四处扩散,如何将粉尘定向导入离心风机,提高除尘效率,是亟待解决的问题。其中集流器是引导粉尘气体进入离心式风机的重要结构,其结构形式对风机性能有很大的影响。有关研究表明圆弧形集流器对提高风机性能效果好。山东冠熙环保设备有限公司对集流器进行改进,在离心式风机集流器内部的侧壁上固定若干条肋组成的“米”字支撑架。
本文将对加米字支撑架的集流器和普通圆弧形集流器进行整机数值模拟,重点分析这2 种结构形式对掘进工作面的粉尘的导流效果,并对比其对风机性能的影响,为掘进工作面降尘效率的提高提供理论依据。
离心式风机流体的数学模型
粉尘流体在风机中流动的物理条件较为复杂,影响因素较多,因此在离心风机的数值计算中,假设流体为连续等温不可压缩的牛顿流体稳态运动而且各组分之间没有化学反应。其在风机中的流动要遵循质量守恒定律、动量定理和能量守恒定律3 个基本物理守恒定律的支配。
离心式风机性能试验原理及其装置为了验证修正后数值计算模型的准确度,离心式风机价格,对原风机的不同工况气动性能试验。将修正前后数值计算模型预测原型机性能结果与试验值作对比分析,由数据可知,采用标准k-ε 模型预测的风机性能曲线较试验值存在一定误差,其较大误差值达9.5%,修正的k-ε 模型,各流量工况下离心式风机出口静压计算值与试验值吻合,其性能曲线趋于重合,两者误差值明显减小,且较大误差降低至3%,充分验证了所采用的数值计算模型修正方法的可行性,同时为下文离心式风机性能的准确度和可靠性预测提供支撑。设计原理分析原风机蜗壳内壁型线采用的是传统蜗壳型线设计方法,即不考虑壁面粘性摩擦的影响,气流动量矩保持不变,运用不等边基圆法绘制的近似阿基米德螺旋线。而实际流动过程中,气体粘性作用常导致其速度在过流断面上呈现的分布不均匀现象。
对于低速小型多翼离心风机而言,由于气体流道狭窄,防爆离心式风机,受粘性作用的影响,风机内壁面边界层分离加剧,经过叶轮加速的气体流速沿蜗壳径向方向逐渐减小,而在离心式风机蜗壳出口处,由于同时受到蜗舌结构和蜗壳壁面的影响,其流速为管道流速度分布,受粘性作用的影响,高压离心式风机,蜗壳内流体于整个流道空间内呈现速度分布不均匀的现象,因此在实际流动过程中,流体动量矩并不是不变的,而是随流动的进行不断减小,故基于动量矩守恒定律设计的传统蜗壳型线存在动量修正的必要。改型设计方法由于气体粘性力无法通过简单的公式运算获得,且其大小受气体速度的影响,因此本文采用一种简单化的求解方法,即基于传统不等边基圆法,离心式风机运用改进后的k-ε 模型对原风机进行数值模拟,设置如图8 所示的4 个监测截面,其方位角φ 分别为90°、180°、270°、360°。通过Fluent 后处理计算得出蜗壳壁面区域于以上4 个截面处所受粘性力大小Fν ,测量力矩中心至力原点距离R,由额定工况下风机总质量流量q 计算得单位质量流体所受黏性力矩平均值m FR / q。
离心式风机叶片吸力侧形成的低能流积聚的“尾迹区”,形成“射流-尾流”结构。加进气箱后,风机叶轮尾缘处的“尾迹-射流”更加的严重,风机模型尾迹区占了比较大的空间,减少了风机流道有效面积。在小流量区,风机内部的流场分布发生偏心现象(C 处),叶轮流道E 侧,气体比较充实,叶轮流道F 侧气体分布较差,与原始风机内部流场分布相比,其离心式风机叶轮流道的充盈性差。离心风机的效率曲线如图6,无进气箱情况下在流量为2.82kg/s,烟台离心式风机,压力为3 106.23Pa 时,达到较率68.64%;加进气箱后在流量为1.68kg/s,压力为2 775.54Pa,达到较率59.45%,通过与原始风机对比可知,加进气箱后其较率降低8.19%。同样由图6 效率曲线对比图可知,加进气箱后风机整体效率降低,与原始离心式风机相比其区域比较窄,缩短了工作区域,且加进气箱后较优工况点向小流量区偏移。加进气箱后,离心风机的全开流量降低,与无进气箱相比,流量降低了16.9%。由图7 可知,加进气箱不仅降低了风机的全开流量,其全压也有所减少。风机性能测试采用C 型试验装置对带进气箱的离心风机进行了性能测试,测试标准按GB/T 1236-2017《工业通风机用标准化风道进行性能实验》执行。
离心式风机价格-烟台离心式风机-冠熙风机 型号齐全由山东冠熙环保设备有限公司提供。山东冠熙环保设备有限公司是从事“轴流风机,耐高温高湿风机,烘干设备用风机,离心风机,除尘风机”的企业,公司秉承“诚信经营,用心服务”的理念,为您提供更好的产品和服务。欢迎来电咨询!联系人:李海伟。同时本公司还是从事高压离心风机,高温离心风机,离心风机厂家的厂家,欢迎来电咨询。