池州搅拌器-水处理搅拌器-中拓鼎承(优选商家)







 黏弹性流体兼有黏性液体与弹性固体的特性,能在变形后呈现弹性恢复,具有与非依时性和依时性这两类非牛顿流体的黏性效应。聚合物熔体和溶液是典型的黏弹性流体,在定态剪切下表现出前述纯黏性非牛顿流体的特性,而当剪切发生变化(包括扩大、收缩流和非定态流动)时则表现出弹性。黏弹性流体具有以下特异流动行为。

  (1)爬杆效应(Weissenberg效应),用搅拌器搅拌黏弹性流体时,转轴处的液面沿轴上升,离轴较远处的液面下降。这一行为与牛顿流体正好相反。为此在设计流体黏弹性较强的搅拌器时,池州搅拌器,应选择合适的搅拌器。否则,会因爬杆效应使流体全部包裹在搅拌器上,与搅拌轴同步旋转,从而使混合和传热等过程均不能正常进行。

  (2)膨胀效应(Barus效应),黏弹性流体从圆管或小孔中流出时有射流膨胀现象,此时流出液的大直径dmax可达圆管内径d的2~3倍。黏弹性流体的膨胀程度与所流经的圆管长度有关,圆管越长,污泥搅拌器,膨胀程度越小;而当圆管充分长时,膨胀比B (B=dmax/d)会达到一定值。膨胀比在聚合物加工中是一重要现象,通过测量膨胀比可获得法向应力差的信息。

  (3)记忆现象(又称弹性滞后),施加压力梯度使黏弹性流体在管内流动;当突然移去压力梯度,黏弹性流体将反向移动一段距离后才停止。

  (4)反向次流,在液体中插入一旋转圆盘,电厂搅拌器,形成的主流是切向流,同时在转盘下方形成轴向次流。在牛顿流体中,次流的方向是轴中心处流体向上而四周流体向下;黏弹性流体则相反,轴心处流体向下而容器四周的流体向上运动。反向次流对搅拌器的搅拌、传质等操作是一个重要的影响因素。


  




搅拌器悬浮临界转速的确定

  所谓悬浮临界转速,是指搅拌釜内悬浮操作达到某一的悬浮状态时,搅拌器转速的小值。只有确定了搅拌器临界转速,才能计算出过程所需要的小功率。  (1)完全离底悬浮的临界转速,搅拌器的完全离底悬浮临界转速常用直接观察法和电导法测定。

  直接观察法是用肉眼观察搅拌釜底颗粒运动状态,当颗粒全部处于运动时,且颗粒在釜底停留(静止)时间不超过1~2s,即认为达到了完全离底悬浮。此法用于实验室研究能够得到满意的结果。

  电导法是在釜底安装多个电导元件,根据电信号的变化,确定完全离底悬浮临界转速。此法可用于不透明釜体的测量上。

  在固-液悬浮操作中,水处理搅拌器,对完全离底悬浮的研究较多,也发表了不少有关搅拌器临界转速的关联式。

  Zwietering通过大量的研究发现,关联式要依据搅拌釜结构尺寸、固相浓度、液体黏度、固体颗粒粒径、固-液两相密度差等影响悬浮操作的主要因素。

(2)均匀悬浮临界转速,均匀悬浮临界转速的确定,常用的方法是通过测釜内各点的固相浓度,根据釜内固相浓度分布的均匀度来判断。

  一般情况下,釜内很难达到均匀悬浮,典型的固体颗粒沿釜深浓度分布如上图所呈,在低转速下,浓度分布不均匀,釜上部浓度低于平均浓度,釜下部浓度高予平均浓度。随着搅拌器转速的增加,浓度分布趋于均匀。当转速增加到一定程度,浓度均匀性不再增加,沿液面深度始终存在有一定的浓度差,而且从釜中可明显地看出沿液深总有一高浓度区。








搅拌器中旋转轴的安装设计

搅拌器中的旋转轴按安装位置可细分为传动轴和搅拌轴。变速器出口侧为传动轴,搅拌器相连的称搅拌轴,两者通过联轴器成为一个整体搅拌轴(通常情况下,选用单支点机架时,一般采用釜外带短节联轴器将搅拌轴与变速器出口侧传动轴相连;采用双支点机架时,搅拌轴常与机架中间短轴相连),习惯上则统称为搅拌轴。搅拌轴的轴径大多通过计算确定,其大小不仅要满足强度要求,还应满足刚度要求。

  搅拌轴刚度除与轴径大小有关外,还取决于轴的支承情况,即与所采用的机架型式、联轴器型式、变速器结构,以及是否采用底轴承或中间轴承等密切相关。

  按支承情况,搅拌轴可分为悬臂式和单跨式。悬臂式搅拌轴在搅拌器内部不设置中间轴承或底轴承,因而维护检修方便,特别对洁净度要求较高的生物、食品或药品搅拌器,减少了器内的构件,故应优先选用。







池州搅拌器-水处理搅拌器-中拓鼎承(优选商家)由山东中拓鼎承化工机械有限公司提供。山东中拓鼎承化工机械有限公司实力不俗,信誉可靠,在山东 淄博 的化工设备等行业积累了大批忠诚的客户。中拓鼎承带着精益求精的工作态度和不断的完善创新理念和您携手步入辉煌,共创美好未来!
山东中拓鼎承化工机械有限公司
姓名: 韩经理 女士
手机: 15953326288
业务 QQ: 1652658257
公司地址: 山东省淄博市淄博经济开发区傅家镇
电话: 0533-8925888
传真: 0533-8639778