华奕互动(图)-图像识别物体系统-北京图像识别物体
物体识别
物体识别领域有了较大的发展。首先图像特征层面,人们设计了各种各样的图像特征,像SIFT,HOG,LBP等等。与此同时,机器学习方法的发展也为模式识别提供了各种强大的分类器。后来人们还在对物体建模方面做了一些工作,旨在用更灵活的模型,图像识别物体系统,而不是单一的模板去定义物体。
随着人工智能、大数据和深度学习技术的不断发展,以及3D传感器、深度摄像头等硬件的不断升级,利用深度信息进行三维物体识别的技术,逐渐受到苹果公司等科技大牛和高通等厂商重视,并被植入到硬件产品中。
物体识别的性能评估方法
判定物体识别的性能通常采用PR曲线。其中P(Precision)指精度(准确率),北京图像识别物体,一般为y轴;R(Recall)指识别率(召回率),一般为x轴。
P=(识别正确的结果)/(所有识别结果);R=(识别正确的结果)/(实际上正确的结果)。识别结果的类型如下:
一个好的识别方法应该同时具备高的准确率与高的召回率。准确率等于0.5是一个界限,图像识别物体价格,当精度低于0.5时,说明该方法的效率己经低于随机猜测的结果,(因为随机猜测的准确率为0.5)。除了PR曲线,也有文献使用其它曲线来度量识别结果,如ROC曲线或FPPW等。物体识别的主要方法
基于物体部件的识别
前述BoW的一个主要缺陷就是没有对特征之间的关系进行建模,因此无法刻画各个特征在空旬中的顺序关系。基于物体部件方法的出发点正是要解决这个问题。在这里物体部件的定义并不一定是指高层语义上的物体部件例(如眼睛、鼻子之于人脸),也可以是一些底层的图像特征,例如图像或者点特征。
华奕互动(图)-图像识别物体系统-北京图像识别物体由北京华奕互动科技有限公司提供。北京华奕互动科技有限公司是一家从事“电子翻书,互动投影,全息成像,滑轨电视,投影融合,电子沙盘”的公司。自成立以来,我们坚持以“诚信为本,稳健经营”的方针,勇于参与市场的良性竞争,使“华奕互动”品牌拥有良好口碑。我们坚持“服务至上,用户至上”的原则,使华奕科技在电子、电工产品制造设备中赢得了客户的信任,树立了良好的企业形象。 特别说明:本信息的图片和资料仅供参考,欢迎联系我们索取准确的资料,谢谢!