抛光液的温度越低,材料的去除速度越快。低温条件下材料的去除速度快主要是因为:温度越低,抛光液被蒸发需要吸收的热量就越多,相同条件下生成的气体越少,包围在零件周围的混合气体层越薄,而在压强和电压不变的情况下,气体变薄就意味着电场强度增大,导致碰撞电离系数显著增大,虽然总的碰撞距离减小,但仍然有更多的电子冲击到工件表面,材料的去除速度当然更快。但在抛光液低温情况下,混合气体层较薄,也意味着气体层不太稳定,等离子抛光过程中断并转变一般电解的的可能性越大,同时气体层薄也意味着系统的电阻减小,电流增大,且电流值大幅度变化,常常引起零件尖锐部位烧蚀等现象,这对复杂形状零件和大尺寸零件来说特别明显。
抛光设备中等离子体源与中气体流量对抛光质量的影响
抛光设备的部件是等离子体源,它的参数设置会直接影响抛光的效果。例如,功率密度的变化会导致等离子体源的温度变化,从而影响等离子体中的粒子浓度和能量分布。因此,在操作抛光设备时,需要关注等离子体源的参数设置,确保其稳定性和可靠性,以获得高质量的抛光效果。抛光设备中的气体流量对抛光质量也有很大的影响。气体流量的不足或过多都会影响等离子体的稳定性和抛光效果。因此,在操作抛光设备时,需要根据不同的抛光材料和工艺参数调整气体流量,以达到的抛光效果。
金属表面电解质等离子抛光利用气液等离子体发生技术,将工件置于抛光液中,施加一定的电压,使工件周围的抛光液汽化,形成一个包裹工件的气层,通过在气层的不同位置形成放电通道,将表面材料微观凸起地去除,实现对金属工件表面抛光。在该抛光体系下电极(抛光工件)、放电介质、气层和抛光液等离子层五相共同作用,主要通过放电去除表面材料,该技术不仅能解决传统机械抛光方法达到的死角位的问题,特别对形状复杂的工件达到很好的抛光效果。抛光后的产品无需除油、除蜡。只需水洗,烘干即可。