SynTumor预测体内递送反应
使用使用SynTumor开发3D模型以评估纳米聚合物在临床试验中使用时的基因递送效率。比较使用直接和血管注射途径的GFP
基因递送。与静态孔板分析相比,SynTumor模型成功地正确预测了纳米聚合物的体内响应。类似于体内观察,聚合物“A”和“B”
在直接注射后具有均匀的3D肿流的GFP转染。然而,在血管注射后,只有聚合物“A'能够扩散通过内皮细胞层,并且均匀地与3D肿流发生作用,这与体内相同。
SynVivo血管微流控芯片
SynVivo的专有微流控芯片能够支持微血管网络,SynVivo 血管微环境模拟系统公司,该网络模拟关于流动,剪切和压力的任何组织内部的循环。能够支持微血管网络,SynVivo 血管微环境模拟系统公司,该网络模拟任何组织内部相对于流量,舟山SynVivo 血管微环境模拟系统,剪切力和压力的循环。已经开发了新颖的共培养方案,其建立了与组织细胞连通的真正的血管单层。用SynVivo芯片生长的人类细胞保留了与组织中发现的细胞相似的生物学表型。的研究人员已经证实,与传统培养技术相比,在SynVivo芯片中生长的细胞能准确地反映体内发现的组织细胞。用SynVivo芯片生长的人类细胞保留了与组织中发现的细胞相似的生物学表型。的研究人员已经证实,与传统培养技术相比,在SynVivo芯片中生长的细胞能准确地反映体内发现的组织细胞。
数字化组织成像与硅蚀刻技术的成功结合使SynVivo可以设计和制造可适应多种用途的微流控芯片。所有芯片设计都包含用于引入细胞和试剂以及收集流出物以进行分析的端口。它们几乎可以容纳任何分析技术。
SynVivo开发了3D组织模型,通过提供一种形态和生物学上逼真的微环境来准确地描述体内现实,从而加速了对细胞行为,递送和发现的实时研究。 SynVivo模型可在体外微流控芯片环境中重建复杂的体内微脉管系统,包括规模,形态,血液动力学切应力和细胞相互作用。这些组织模型在形态和生理上都是现实的,并排架构可实现实时可视化。
SynRAM 3D模型提供了一个现实的测试环境,其中包括:
微血管环境中的生理切应力
具有完全封闭腔的体内类血管形态
细胞间相互作用的共培养能力
单个实验的实时定量滚动,粘附和迁移数据
SynRAM能够在一个实验中实时评估细胞相互作用,包括通过多个细胞层的滚动,粘附和迁移,并代表与体内结果密切相关的数据。
SynRAM的创新设计克服了流动室或基于Transwell室的测定法固有的当前局限性。当前的流动室设计过于简单,缺乏微环境的规模和几何形状,无法模拟迁移。同样,Transwell腔室无法解决体内观察到的流体剪切力和尺寸/拓扑结构,SynVivo 血管微环境模拟系统公司,迁移的终点测量结果不可重现,并且无法提供实时可视化效果。
SynVivo的专有芯片设计范围从复杂的体内衍生微血管网络(从数字化图像获得)到产生逼真的细胞组成和血管形态,从而导致剪切和流动条件变化,再到简化的理想化网络,旨在再现细胞组成以及恒定的剪切和流动条件。
SynRAM 3D模型套件组件
可以以试剂盒形式购买使用SynRAM模型进行测定所需的所有基本组件。 根据个人研究需求,您可以从SynRAM芯片的“理想化”或“微血管”配置中进行选择。 包括所有附件,包括管子,夹子,针头和注射管。 入门工具包还将包括气动启动装置(使用SynRAM进行分析需要)。
世联博研-舟山SynVivo 血管微环境模拟系统由世联博研(北京)科技有限公司提供。世联博研(北京)科技有限公司是北京 北京市 ,科研仪器仪表的见证者,多年来,公司贯彻执行科学管理、创新发展、诚实守信的方针,满足客户需求。在世联博研领导携全体员工热情欢迎各界人士垂询洽谈,共创世联博研更加美好的未来。