茶叶检测品质-金标准|资质齐全(图)
图像分割的准确性直接作用于目标物测量的准确性,其效率直接影响生产的效率,因而,一个快速准确图像分割算法是目标识别,分级分类任务面临的首要问题。在农业产品分级分类任务中,图像分割的目的是将工业相机采集到的图片中的农产品准确的提取出来,为进一步的尺寸测量,分类任务做好准备。对于农产品图像分割算法来说,由于受到生产设备成像质量,灰尘污渍,光照条件,阴影等外部因素影响,造成分割的不准确。本文通过对比不同图像分割算法,阐述各类算法的优缺点,以及各自合适的应用场景。
大类间方差法根据图像的灰度特性寻找阙值,茶叶检测品质,使分割出的图像区域之间的差别大,用于判断分割图像区域之间的差别是其各区域间的内部方差。大类间方差法极易受到噪音的影响,如阴影,但在单纯背景条件下,适用于初步的获取目标物的位置。大熵阙值法与大类间方差原理类似,将图像通过信息熵分为不同区域。信息熵在混乱无序的系统中较大,在确定有序的系统中较小,根据信息熵的特性,可将图像分割为不同的区域。
茶叶检测品质-金标准|资质齐全(图)由安徽省金标准检测研究院有限公司提供。安徽省金标准检测研究院有限公司实力不俗,信誉可靠,在安徽 合肥 的咨询、调研等行业积累了大批忠诚的客户。安徽金标准带着精益求精的工作态度和不断的完善创新理念和您携手步入辉煌,共创美好未来!