










简述焊接机器人的运动控制系统
用户为了正确使用并做到能常规维护焊接机器人,要对焊接机器人的运动控制系统有一定的了解,掌握其工作原理。
焊接机器人是装上了焊钳或各种焊的工业机器人。工业机器人的运动控制系统涉及数学、自动控制理论等,内容很多。要在较短的篇幅中,而系统地介绍工业机器人的运动控制系统,实在是非工业机器人控制人员所能及的事情,从焊接机器人的用户角度出发简明地阐述有关机器人运动控制系统的一般性问题。
焊接机器人系统包括:一焊接机器人,一用来控制焊接机器人驱动的机器人控制器,一个用来检测焊接机器人焊接状态的传感器,以及一个用来执行焊接机器人和机器人控制器整个控制的主个人计算机(PC),其中主PC机根据传感器提供的检测信号向机器人控制器发送和接收关于焊接机器人移动路径的修正命令,因而直接控制焊接机器人的移动路径。因此,在焊接机器人系统中,在焊接过程中主PC机可以直接控制焊接机器人的移动路径。
机器人控制系统是机器人的重要组成部分,主要用于对机器人运动的控制,以完成特定的工作任务,其基本功能如下:
1 记忆功能:存储作业顺序、运动路径、运动方式、运动速度和与生产工艺有关的信息。
2 示教功能:离线编程、在线示教、间接示教。在线示教包括示教盒和导引示教两
3 与外围设备联系功能:输入和输出接口、通信接口、网络接口、同步接口。
4 坐标设置功能:有关节坐标系、坐标系、工具坐标系和用户自定义四种坐标系。
5 人机接口:示教盒、操作面板、显示屏。
6 传感器接口:位置检测、视觉、触觉、力觉等。
7 位置伺服功能:机器人多轴联动、运动控制、速度和加速度控制、动态补偿等。
8 故障诊断安全保护功能:运行时系统状态监视、故障状态下的安全保护和故障自诊断。
焊接机器人电弧的静特性与哪些因素有关
焊接机器人是利用产生的电弧对材料施加作用,从而达到焊接的目的,电弧在焊接过程中也会表现出不同的性能,静特性是其中之一。事实上,焊接机器人电弧的静特性还是与很多因素有关的,如果能充分掌握这一点,也有助于理解电弧变化的原因。
焊接机器人焊接作业中,一旦电极材料、气体介质以及弧长等方面都能保持一定的情况下,只要焊接机器人的电弧能稳定燃烧,焊接电流和电弧电压会呈现出相应的变化。
由此可知,电极材料、气体介质、电弧长度等都与焊接机器人电弧的静特息相关,在周围气体介质压力的影响下,如果其他参数不变的话,电弧压力会因介质压力的变化而变化。
所谓的电弧长度变化,只要还是指焊接机器人弧柱长度的变化,与此同时,阴极区和阳极区的长度的变化并不显著。那么一旦整个弧柱的压降增加,电弧的静特性位置也会随之提高。即当电流一定时,电弧长度增加,电弧电压将随之增加。
由于气体种类的不同,将会导致气体的电离能和热物理性能也不同,对于会对电弧电压到了差异化影响。一般情况下,导热系数大的气体对电弧的冷却作用会更强一些,所以这时候焊接机器人的电弧电压是升高的。
管道焊接机器人的可视焊缝系统
提出了一种基于可见光产生的焊缝跟踪系统,并将其应用于管道焊接机器人。首先,在分析激光在焊接表面反射、摄像机位置、激光平面和激光条纹图像影响的基础上,设计了视觉传感器。为了防止焊缝图像中严重的反扰,已经开发了用于图像处理和特征提取的算法。为了跟踪管道焊接的焊缝,人们刚刚采用了图像视觉控制系统。通过控制管道焊接机器人的焊缝跟踪实验,机器人焊接线原理,正式验证了系统的性能。焊缝跟踪是机器人焊接中的问题之一,也是自动焊接的基础。大多数工业焊接机器人用于教学,机器人重复这条路径以满足焊接中光束的位置要求。这种模式的焊接机器人存在焊接位置不准确、热扩散导致焊接处变形和变形等问题。这些问题导致梁偏离其理论焊接路径,因此有必要在焊接过程中控制梁的焊接轨迹。其次,管道焊接机器人不能预先定义焊缝,因为当管道改变方向时,焊缝可能偏离管道内的位置。焊缝的轨迹可以随着管子在轴向上的移动而改变。在这种情况下,这种模式不适合管道焊接,焊接机器人需要在焊接时及时校正横梁和焊缝之间的偏移。为了避免移动管道时焊缝的偏差,解决方法是使用三自由度多机械手来提升管道,调整管道的位置和矫直管道的方向。当管道改变方向时,焊缝将偏离其原始位置,因此焊接需要焊缝跟踪系统。
德宏机器人焊接线原理-领诚电子(推荐商家)由郑州领诚电子技术有限公司提供。“淬火生产线,调质生产线,感应加热设备,中频透热炉”选择郑州领诚电子技术有限公司,公司位于:河南省郑州市高新区玉兰街16号,多年来,领诚电子坚持为客户提供好的服务,联系人:李经理。欢迎广大新老客户来电,来函,亲临指导,洽谈业务。领诚电子期待成为您的长期合作伙伴!同时本公司还是从事高频焊接机,钻头焊接机,车刀焊接机的厂家,欢迎来电咨询。