





热分析入门:食品检测中的两大关键技术
在食品研发与质量控制中,热分析技术凭借其、的特点,成为不可或缺的分析手段。以下介绍两种技术及其应用:
1.差示扫描量热法(DSC)
*原理:测量样品与参比物在程序控温下维持相同温度所需的热流差。直接反映样品在加热/冷却过程中的吸热(如熔化)或放热(如结晶、氧化)行为。
*食品应用场景:
*淀粉糊化分析:测定糊化温度与焓值,优化加工工艺(如烘焙、膨化)。
*油脂特性表征:检测熔点、结晶行为、氧化稳定性(氧化放热峰),评估起酥油、巧克力品质。
*蛋白质变性研究:测定变性温度与焓变,研究热加工对乳品、肉类蛋白的影响。
*玻璃化转变温度(Tg)测定:预测冷冻食品、干燥食品的稳定性与保质期。
2.热重分析法(TGA)
*原理:在程序控温下,连续测量样品质量随温度/时间的变化。
*食品应用场景:
*水分与挥发分定量:测定固体、粉末食品(如奶粉、面粉、香料)中的水分、易挥发成分含量。
*灰分/无机物含量分析:通过高温灼烧后残留物质量,快速测定食品总灰分(矿物质含量)。
*热稳定性与分解行为:评估食品成分(如油脂、碳水化合物)的热分解温度与过程,研究油炸稳定性、储存条件影响。
*添加剂与成分分析:鉴别不同组分(如聚合物包装材料与食品)的热分解差异。
为何重要?
DSC揭示食品组分在温度变化下的能量与状态转变,是理解功能性(如质构、稳定性)的关键;TGA则提供成分含量与热稳定性的直接数据,关乎安全与保质期。两者常结合使用,为食品配方优化、工艺控制、货架期预测及质量问题诊断提供强大科学支撑。
掌握DSC与TGA,您将拥有洞察食品“热行为”的钥匙,为品质与安全保驾护航。
TGA 测试食品粉末:样品平铺厚度影响结果?1 个标准厚度参考。

在热重分析(TGA)测试食品粉末时,样品平铺厚度对结果有显著影响,控制厚度是获得可靠、可重复数据的关键因素之一。主要影响体现在以下几个方面:
1.传热效率与温度梯度:
*过厚:当粉末层过厚时,热量从样品盘底部传递到顶部表层需要时间,导致样品内部存在明显的温度梯度。底部样品实际达到设定温度时,顶部样品温度可能偏低。这会导致:
*热滞后:观测到的热分解/失重起始温度、峰值温度向高温偏移,差示扫描量热分析仪公司,不能反映材料真实的分解温度。
*反应速率失真:失重速率曲线变宽、失真,可能掩盖多步反应或导致反应步骤分辨不清。
*表观失重不完全:如果内部温度不足,某些反应可能无法完全进行。
*过薄:虽然传热问题较小,但样品量过少会降低信号强度,蚌埠差示扫描量热分析仪,增加称量误差的相对影响,可能难以微小的失重步骤。
2.气体扩散与反应气氛:
*过厚:分解或氧化反应产生的气体(如水分、CO?、挥发性有机物)需要从粉末层内部扩散逸出。过厚的层会阻碍气体扩散:
*改变反应路径:在氧化性气氛中,内部可能因缺氧而经历部分热解而非完全氧化,导致失重曲线与预期不同(例如,本该燃烧却发生炭化)。
*延迟失重:气体逸出受阻,使失重速率变慢,失重峰拖尾。
*二次反应:滞留的气体可能与未分解的样品发生二次反应,干扰原始过程。
*过薄:气体扩散通常不是问题。
3.称量代表性与均匀性:
*过厚/不均匀:难以保证整个厚层内样品成分分布均匀。若存在局部堆积或密度差异,测试结果可能无法代表整体粉末的性质。
*过薄:如果粉末本身不均匀(如含有少量大颗粒或油脂斑点),过薄的取样可能因样品量太少而缺乏代表性。
标准厚度参考:
虽然严格意义上的“标准厚度”并不存在(因为厚度也受样品性质、坩埚尺寸、升温速率和目标反应类型影响),但一个广泛推荐并被许多实验室采纳的经验性参考范围是:将粉末样品平铺成约1毫米(mm)到3毫米(mm)厚的均匀薄层。
为什么是这个范围?
*1-3mm厚度在大多数标准坩埚(如直径5-7mm)中,通常对应着几毫克到十几毫克的样品量(具体需称量),这是一个在信号强度、称量误差和热质传递之间取得较好平衡的范围。
*这个厚度层显著减小了温度梯度,使样品能更接近程序设定的温度。
*它允许反应气体相对有效地扩散逸出,减少其对反应进程的干扰。
*更容易实现铺样均匀,提高结果的代表性和重复性。
关键操作建议:
1.均匀铺平:使用干净的工具(如小、细针)将粉末在坩埚底部轻柔、均匀地铺开,避免压实,但要消除大的空隙和堆积点。目标是一个平坦、厚度均一的表面。
2.避免压实:过度压实会增加颗粒间接触,阻碍气体扩散,也可能引入应力。
3.根据样品微调:
*对于密度小、蓬松的粉末(如某些奶粉、蛋),可能稍厚一点(接近3mm)仍可接受。
*对于密度大、流动性差或有结块倾向的粉末,可能需要更小心地铺成更薄(接近1mm)且均匀的层。必要时可过筛预处理。
*对于极易飞溅或起泡的样品,有时需要更薄或使用特殊坩埚盖。
4.重复性测试:如果条件允许,对同一样品尝试不同的铺样厚度(如1mm,2mm,差示扫描量热分析仪中心,3mm),比较TGA曲线(特别是失重台阶的起始温度、峰温和失重百分比),观察结果是否稳定。这有助于确定该样品的厚度范围。
5.报告厚度/状态:在实验记录和报告中,明确说明样品制备状态是“松散铺平”,并记录大致的厚度范围(如“平铺厚度约2mm”)或目视描述(如“形成均匀薄层覆盖坩埚底”),这对于结果解读和实验重现至关重要。
总结:在食品粉末的TGA测试中,忽略样品平铺厚度会导致失重温度、速率和程度等关键信息的失真。将粉末轻柔、均匀地平铺成大约1毫米至3毫米厚的薄层,差示扫描量热分析仪机构,是获得可靠、可重复数据的一个关键且普遍推荐的实践标准。务必在报告中注明样品的制备状态。

原因分析:
1.有机质不完全分解:灰分测定的是将样品中的所有有机物质在高温下有氧条件下完全氧化分解,只留下不可燃的无机矿物质残留(灰分)。如果温度不足:
*碳水化合物、蛋白质、脂肪等可能无法完全燃烧成气体(如CO?、H?O、N?),而是发生碳化,形成黑色的焦炭或碳质残留物。
*这些未燃尽的碳质残留物在称重时会被计入终的残留物质量中。
2.残留碳质物计入灰分:TGA记录的是样品在程序升温过程中的质量损失。在灰分测定阶段(通常是高温恒温段),质量应趋于稳定,代表只剩下无机灰分。温度不足时,质量损失曲线可能未达到平台期,或者平台期的质量值包含了未完全燃烧的碳质物。终残留质量=真实灰分+未燃尽的有机碳残留。
3.结果偏大:由于未燃尽的碳残留增加了残留物的质量,导致报告的“灰分”数值高于样品中真实的无机矿物质含量。
简单来说:温度不够,东西没烧干净,残留的“灰”里混进了没烧完的黑炭,称起来就更重了。
两个关键的校准/质控技巧:
1.使用有证标准物质(CRM)校准:
*选择:获取与待测样品基质相似(如脱脂奶粉、面粉、特定植物粉)且具有认证灰分含量的标准物质。
*操作:严格按照标准方法(包括的终灰化温度和时间)对CRM进行灰分测定。重复测定足够次数(如3-5次)。
*校准/验证:计算测定结果的平均值,并与CRM的认证值进行比较。
*如果结果在认证值的不确定度范围内,说明你的仪器(TGA或马弗炉)和操作在该温度下是可靠的。
*如果结果显著偏高,这强烈提示设定的温度或时间不足以完全灰化该类型样品(即使对CRM也是如此),需要提高终灰化温度或延长恒温时间。
*如果结果偏低(罕见,除非挥发损失矿物),则需检查其他问题(如样品喷溅、矿物挥发)。
*意义:这是直接、可靠的方法,用于验证特定温度下特定基质样品灰化过程的完全性和方法的准确性。
2.进行严格的空白试验:
*操作:使用与样品测定完全相同的坩埚(材质、清洗、预处理状态相同),进行空白灼烧。即不放入任何样品,但经历与样品完全相同的升温程序、终温度、恒温时间和冷却过程。
*目的:
*校正坩埚质量变化:高温下,坩埚本身(尤其是瓷坩埚)可能会有极微小的质量损失(失重)或吸收空气中的水分/二氧化碳导致增重(增重更少见)。空白试验可以测定这个变化值(Δm_blank)。
*校正环境背景:捕获可能来自炉膛气氛或环境中的微量可沉降物。
*计算:在计算样品灰分时,必须使用空白校正后的坩埚质量:
`灰分(%)=[(m_residue-m_empty_crucible-Δm_blank)/m_sample]×100%`
*`m_residue`:灼烧后坩埚+灰分质量
*`m_empty_crucible`:灼烧前坩埚质量(通常已恒重)
*`Δm_blank`:空白坩埚经历相同程序后的质量变化(可为正或负)
*`m_sample`:样品质量
*意义:确保称量的是真正来自样品的残留物质量,消除了坩埚本身在高温过程中的系统误差和微小环境背景干扰,提高了测定的精密度和准确度。这对于微量灰分或高精度要求尤为重要。
总结:
温度不足会导致有机质碳化残留,使灰分结果偏大。要确保结果准确,必须:
1.使用合适的有证标准物质验证设定的灰化温度和时间足以使有机物完全分解。
2.进行严格的空白试验以校正坩埚自身在高温下的质量变化和环境背景影响。
此外,还需确保:
*温度均匀性:马弗炉内温度分布均匀(TGA通常较好)。
*热电偶校准:定期校准温度测量系统。
*恒重判定:确保样品在终温度下灼烧至恒重(连续两次称量差小于规定值,如0.3mg),这是判断灰化完全的关键操作步骤。温度不足时,即使延长时间也可能无法达到恒重。
蚌埠差示扫描量热分析仪-中森联系方式-差示扫描量热分析仪中心由广州中森检测技术有限公司提供。广州中森检测技术有限公司是广东 广州 ,技术合作的见证者,多年来,公司贯彻执行科学管理、创新发展、诚实守信的方针,满足客户需求。在中森检测领导携全体员工热情欢迎各界人士垂询洽谈,共创中森检测更加美好的未来。