





奶粉水分热分析:避开3大预处理误区,避免数据“翻车”!
奶粉水分含量是决定其品质稳定性和保质期的关键指标。热分析法(如干燥失重法)因其简便、快速被广泛采用。然而,样品预处理环节的微小失误,足以导致终结果出现成倍的惊人偏差!避开这三个常见误区,是获取可靠数据的基石:
1.误区一:取样随意,缺乏代表性
*错误操作:仅从奶粉罐表层或某个局部位置取样,或简单搅拌几下便取样。
*严重后果:奶粉在储存运输中极易发生水分迁移和分层。表层可能更干燥或更吸湿,底部可能因受压结块且水分分布不均。局部取样无法反映整批产品的真实平均水分,导致结果显著偏高或偏低,偏差轻松超过50%,甚至翻倍。
*解决方案:严格遵循四分法取样!将整批奶粉充分混合均匀(避免剧烈搅拌引入过多空气),然后采用标准四分法缩分至所需样品量,确保取样的随机性和整体代表性。
2.误区二:研磨不当,破坏颗粒或引入水分
*错误操作:对结块奶粉粗暴研磨(产生高温),肇庆差示扫描量热仪dsc,或使用未预冷的研磨设备,或研磨过度导致粉末过细。
*严重后果:
*热降解:剧烈摩擦生热可能导致局部温度升高,促使结合水或易挥发物质损失,使测得水分偏低。
*吸湿:研磨过程暴露新鲜表面,若环境湿度控制不当(或设备未预冷),粉末会迅速吸收空气中水分,导致结果虚高。
*物理吸附变化:过度研磨产生超细粉,比表面积剧增,物理吸附能力增强,可能影响水分在加热过程中的释放行为,差示扫描量热仪dsc公司,导致结果偏差。
*解决方案:温和冷冻研磨!对于结块样品,先手工轻轻压碎大块。研磨务必在低温环境(如冷冻研磨仪)或短暂冷冻样品后进行,严格控制研磨温度不超过40℃,研磨至能通过规定筛网即可(避免过度粉碎)。研磨过程尽量快速,并立即转移至干燥密闭容器。
3.误区三:暴露时间过长,忽视环境湿度
*错误操作:研磨后的样品长时间暴露在空气中才称量,或在高湿度实验室环境中进行分装、称量操作。
*严重后果:奶粉,尤其是研磨后的细粉,吸湿性极强。在非干燥环境中,即使短短几分钟的暴露,也可能导致样品吸收可观的水分。若在称量前吸湿,结果会显著偏高;若在干燥后冷却过程中吸湿(未在干燥器中冷却或冷却时间过长),同样会导致结果偏高。这种偏差往往在不知不觉中发生,且数值影响巨大。
*解决方案:快速操作+干燥环境!研磨后样品立即转入干燥、密封的容器。称量过程务必在干燥环境(如手套箱或湿度可控实验室)中快速完成。使用带盖的称量皿,尽量减少开盖时间。干燥后的样品必须在干燥器中冷却至室温后立即称量。
结论:
奶粉水分热分析,“三分靠仪器,七分靠前处理”。取样无代表性、研磨引入热/湿误差、环境暴露导致吸湿——这三大预处理误区是数据严重失准(偏差达50%-100%甚至更高)的罪魁祸首。严格规范执行代表性取样、低温温和研磨、全程快速防吸湿操作,才能确保热分析法测得的水分值真实反映奶粉品质,为生产和质量控制提供坚实可靠的数据支撑。忽略预处理细节,再精密的仪器也难逃“失之毫厘,差示扫描量热仪dsc中心,谬以千里”的结局!
热分析入门必看:食品检测里常用的 2 种热分析技术(附应用场景)。

热分析入门:食品检测中的两大关键技术
在食品研发与质量控制中,热分析技术凭借其、的特点,差示扫描量热仪dsc技术,成为不可或缺的分析手段。以下介绍两种技术及其应用:
1.差示扫描量热法(DSC)
*原理:测量样品与参比物在程序控温下维持相同温度所需的热流差。直接反映样品在加热/冷却过程中的吸热(如熔化)或放热(如结晶、氧化)行为。
*食品应用场景:
*淀粉糊化分析:测定糊化温度与焓值,优化加工工艺(如烘焙、膨化)。
*油脂特性表征:检测熔点、结晶行为、氧化稳定性(氧化放热峰),评估起酥油、巧克力品质。
*蛋白质变性研究:测定变性温度与焓变,研究热加工对乳品、肉类蛋白的影响。
*玻璃化转变温度(Tg)测定:预测冷冻食品、干燥食品的稳定性与保质期。
2.热重分析法(TGA)
*原理:在程序控温下,连续测量样品质量随温度/时间的变化。
*食品应用场景:
*水分与挥发分定量:测定固体、粉末食品(如奶粉、面粉、香料)中的水分、易挥发成分含量。
*灰分/无机物含量分析:通过高温灼烧后残留物质量,快速测定食品总灰分(矿物质含量)。
*热稳定性与分解行为:评估食品成分(如油脂、碳水化合物)的热分解温度与过程,研究油炸稳定性、储存条件影响。
*添加剂与成分分析:鉴别不同组分(如聚合物包装材料与食品)的热分解差异。
为何重要?
DSC揭示食品组分在温度变化下的能量与状态转变,是理解功能性(如质构、稳定性)的关键;TGA则提供成分含量与热稳定性的直接数据,关乎安全与保质期。两者常结合使用,为食品配方优化、工艺控制、货架期预测及质量问题诊断提供强大科学支撑。
掌握DSC与TGA,您将拥有洞察食品“热行为”的钥匙,为品质与安全保驾护航。

在热重分析(TGA)中测试食品的吸湿性(主要是吸附水的含量和脱附行为),将温度范围设置为0-100℃通常是足够的,甚至是更优的选择。理由如下:
1.吸湿水脱附温度范围:食品中物理吸附的“吸湿水”(或称自由水、吸附水)主要通过氢键等弱作用力结合,其脱附(蒸发)主要发生在相对较低的温度区间。对于绝大多数食品材料:
*显著失重通常始于室温以上(~30-50℃)。
*主要失重峰(代表大量吸湿水的蒸发)通常出现在50-90℃之间。
*在常压或接近常压的TGA测试条件下(通常使用惰性气体如N?),吸湿水在100℃之前基本可以完全脱附。将终点设为100℃可以确保覆盖绝大部分吸湿水的脱附过程。
2.避免热分解干扰:食品是复杂的有机混合物,包含蛋白质、碳水化合物、脂肪、有机酸等。这些组分的热分解(如美拉德反应初期、糖的焦化、蛋白质变性分解、脂肪氧化分解等)通常起始于100℃以上(常见于150-250℃甚至更高)。如果温度范围设置过高(如超过150℃),在吸湿水脱附完成后,样品开始发生热分解反应,导致额外的失重。这会严重干扰对吸湿水含量的准确测定,因为失重曲线不再单纯反映水分的损失,还包含了其他挥发性分解产物的损失。
3.关注目标-吸湿性:吸湿性测试的目标是量化样品在特定环境条件下吸附的水分含量及其脱附行为(如起始脱附温度、大失重速率温度等)。0-100℃的范围正是吸湿水脱附发生的温区,完全聚焦于目标。
4.升温速率的影响:虽然100℃上限足够,但升温速率的选择至关重要:
*推荐使用较慢的升温速率(如2℃/min,5℃/min)。较慢的升温有利于吸附水有充分的时间脱附,使失重峰更清晰、分离度更好,能地反映不同结合强度水分的脱附过程(尽管TGA对水的结合状态区分能力有限)。
*过快的升温速率(如10-20℃/min或更高)可能导致水分脱附峰变宽、前移或重叠,甚至可能因样品内部蒸汽压快速升高导致微爆裂,影响测量精度和重复性。
5.等温段的价值:在动态升温到100℃后,保持一个短暂的等温段(如5-15分钟)非常有益。这可以确保所有在升温过程中未能及时脱附的残留吸附水(特别是结合稍强或在材料内部扩散较慢的水分)在100℃下充分蒸发,使失重曲线达到平台,从而地确定终失重量(即吸湿水总量)。
6.实际应用与标准参考:许多与食品水分含量测定相关的标准方法(如烘箱法,通常设定在100-105℃)的原理就是在略高于水沸点的温度下驱除水分。TGA在0-100℃动态扫描结合100℃等温,本质上是对这一过程的更、连续的在线监测。
总结与建议:
*温度范围:0-100℃对于食品吸湿性(吸附水含量)的TGA测试是完全足够的。这个范围有效覆盖了吸湿水脱附的主要温区,同时避免了更高温度下热分解反应的干扰。
*关键参数:
*升温速率:优先选择慢速升温(2-5℃/min)以获得更清晰、准确的失重峰。
*终点等温:强烈建议在100℃设置一个短时等温段(如5-15min),确保水分完全脱附,失重达到稳定平台。
*气氛:使用干燥的惰性气体(如高纯N?),流速稳定。
*样品量:适量(通常几毫克),均匀铺平,避免堆积。
*注意事项:对于某些含有特殊高沸点溶剂或极其耐热的成分(这种情况在食品中很少见)的样品,或者需要研究结合水(这部分水可能需要在稍高温度下脱附,但仍远低于分解温度)的行为,可酌情将终点温度略微提高至105-110℃。但对于绝大多数食品吸湿性研究,0-100℃(含等温)是标准且可靠的选择。
因此,在您的研究中,将TGA温度范围设定为0-100℃,并采用慢速升温和终点等温的策略,是准确测定食品吸湿性的合理且推荐的方法。这能确保您获得的数据主要反映目标水分的变化。
中森检测收费合理-差示扫描量热仪dsc中心由广州中森检测技术有限公司提供。广州中森检测技术有限公司在技术合作这一领域倾注了诸多的热忱和热情,中森检测一直以客户为中心、为客户创造价值的理念、以品质、服务来赢得市场,衷心希望能与社会各界合作,共创成功,共创辉煌。相关业务欢迎垂询,联系人:陈果。